
© 1992 SCIENTIFIC AMERICAN, INC



How Neural Networks 
Learn from Experience 
Networks of artificial neurons can learn to represent 

complicated information. Such neural networks may prOvide 
inSights into the learning abilities of the human brain 

by Geoffrey E. Hinton 

T he brain is a remarkable computer. It 
interprets imprecise information from 
the senses at an incredibly rapid rate. 

It discerns a whisper in a noisy room, a face 
in a dimly lit alley and a hidden agenda in a 
political statement. Most impressive of all, the 
brain learns-without any explicit instruc­
tions-to create the internal representations 
that make these skills possible. 

Much is still unknown about how the brain 
trains itself to process information, so theo­
ries abound. To test these hypotheses, my col­
leagues and I have attempted to mimic the brain's learning 
processes by creating networks of artificial neurons. We con­
struct these neural networks by first trying to deduce the es­
sential features of neurons and their interconnections. We 
then typically program a computer to simulate these features. 

Because our knowledge of neurons is incomplete and our 
computing power is limited, our models are necessarily gross 
idealizations of real networks of neurons. Naturally, we en­
thusiastically debate what features are most essential in sim­
ulating neurons. By testing these features in artificial neural 
networks, we have been successful at ruling out all kinds of 
theories about how the brain processes information. The 
models are also beginning to reveal how the brain may ac­
complish its remarkable feats of learning. 

In the human brain, a typical neuron collects signals from 
others through a host of fine structures called dendrites. The 
neuron sends out spikes of electrical activity through a long, 
thin strand known as an axon, which splits into thousands 
of branches. At the end of each branch, a structure called a 
synapse converts the activity from the axon into electrical 
effects that inhibit or excite activity in the connected neu­
rons. When a neuron receives excitatory input that is suffi­
ciently large compared with its inhibitory input, it sends a 
spike of electrical activity down its axon. Learning occurs by 
changing the effectiveness of the synapses so that the influ­
ence of one neuron on another changes. 

Artificial neural networks are typically composed of inter­
connected "units," which serve as model neurons. The func­
tion of the synapse is modeled by a modifiable weight, which 
is associated with each connection. Most artificial networks 
do not reflect the detailed geometry of the dendrites and ax-

NETWORK OF NEURONS in the brain provides people with 
the ability to assimilate information. Will simulations of such 
networks reveal the underlying mechanisms of learning? 

ons, and they express the electrical output of 
a neuron as a single number that represents 
the rate of firing-its activity. 

Each unit converts the pattern of incoming 
activities that it receives into a single outgo­
ing activity that it broadcasts to other units. It 
performs this conversion in two stages. First, 
it multiplies each incoming activity by the 
weight on the connection and adds together 
all these weighted inputs to get a quantity 
called the total input. Second, a unit uses an 
input-output function that transforms the to­

tal input into the outgoing activity [see "The Amateur Scien­
tist," page 170]. 

The behavior of an artificial neural network depends on 
both the weights and the input-output function that is speci­
fied for the units. This function typically falls into one of three 
categories: linear, threshold or sigmoid. For linear units, the 
output activity is proportional to the total weighted input. 
For threshold units, the output is set at one of two levels, de­
pending on whether the total input is greater than or less 
than some threshold value. For sigmoid units, the output 
varies continuously but not linearly as the input changes. 
Sigmoid units bear a greater resemblance to real neurons 
than do linear or threshold units, but all three must be consid­
ered rough approximations. 

To make a neural network that performs some specific 
task, we must choose how the units are connected to one 
another, and we must set the weights on the connections ap­
propriately. The connections determine whether it is possi­
ble for one unit to influence another. The weights specify the 
strength of the influence. 

The commonest type of artificial neural network consists 
of three groups, or layers, of units: a layer of input units is 
connected to a layer of "hidden" units, which is connected to 
a layer of output units. The activity of the input units repre­
sents the raw information that is fed into the network. The 
activity of each hidden unit is determined by the activities of 
the input units and the weights on the connections between 
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IDEAUZA nON OF A NEURON processes activities, or signals. Each input activity is 
multiplied by a number called the weight. The "unit" adds together the weighted in· 
puts. It then computes the output activity using an input· output function. 

the input and hidden units. Similarly, 
the behavior of the output units de· 
pends on the activity of the hidden 
units and the weights between the hid­
den and output units. 

This simple type of network is inter­
esting because the hidden units are free 
to construct their own representations 
of the input. The weights between the 
input and hidden units determine when 
each hidden unit is active, and so by 
modifying these weights, a hidden unit 
can choose what it represents. 

We can teach a three-layer network 
to perform a particular task by using 
the following procedure. First, we pre­
sent the network with training exam-

••• 

COMMON NEURAL NETWORK consists 
of three layers of units that are fully 
connected. Activity passes from the in­
put units (green) to the hidden units 
(gray) and finally to the output units 
(yellow). The reds and blues of the con­
nections represent different weights. 

pIes, which consist of a pattern of activ­
ities for the input units together with 
the desired pattern of activities for the 
output units. We then determine how 
closely the actual output of the network 
matches the desired output. Next we 
change the weight of each connection so 
that the network produces a better ap­
proximation of the desired output. 

For example, suppose we want a net­
work to recognize handwritten digits. 
We might use an array of, say, 256 sen­
sors, each recording the presence or 
absence of ink in a small area of a sin­
gle digit. The network would therefore 
need 256 input units (one for each sen­
sor), 10 output units (one for each kind 
of digit) and a number of hidden units. 
For each kind of digit recorded by the 
sensors, the network should produce 
high activity in the appropriate output 
unit and low activity in the other out­
put units. 

To train the network, we present an 
image of a digit and compare the actu­
al activity of the 10 output units with 
the desired activity. We then calculate 
the error, which is defined as the square 
of the difference between the actual and 
the desired activities. Next we change 
the weight of each connection so as to 
reduce the error. We repeat this train­
ing process for many different images 
of each kind of digit until the network 
classifies every image correctly. 

To implement this procedure, we 
need to change each weight by an 
amount that is proportional to the rate 
at which the error changes as the weight 
is changed. This quantity-called the er­
ror derivative for the weight, or Simply 
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the EW-is tricky to compute efficient­
ly. One way to calculate the EW is to 
perturb a weight slightly and observe 
how the error changes. But that meth­
od is inefficient because it requires a 
separate perturbation for each of the 
many weights. 

Around 1974 Paul J. Werbos invent­
ed a much more efficient procedure for 
calculating the EW while he was work­
ing toward a doctorate at Harvard Uni­
versity. The procedure, now known as 
the back-propagation algorithm, has be­
come one of the more important tools 
for training neural networks. 

The back-propagation algorithm is 
easiest to understand if all the units in 
the network are linear. The algorithm 
computes each EW by first computing 
the EA, the rate at which the error 
changes as the activity level of a unit is 
changed. For output units, the EA is 
simply the difference between the actu­
al and the desired output. To compute 
the EA for a hidden unit in the layer 
just before the output layer, we first 
identify all the weights between that 
hidden unit and the output units to 
which it is connected. We then multiply 
those weights by the EAs of those out­
put units and add the products. This 
sum equals the EA for the chosen hid­
den unit. After calculating all the EAs in 
the hidden layer just before the output 
layer, we can compute in like fashion 
the EAs for other layers, moving from 
layer to layer in a direction opposite to 
the way activities propagate through 
the network. This is what gives back 
propagation its name. Once the EA has 
been computed for a unit, it is straight­
forward to compute the EW for each in­
coming connection of the unit. The EW 
is the product of the EA and the activity 
through the incoming connection. 

For nonlinear units, the back-propa­
gation algorithm includes an extra step. 
Before back-propagating, the EA must 
be converted into the £I, the rate at 
which the error changes as the total in­
put received by a unit is changed. (The 
details of this calculation are given in 
the box on page 148.) 

T he back-propagation algorithm 
was largely ignored for years after 
its invention, probably because its 

usefulness was not fully appreciated. 
In the early 1980s David E. Rumelhart, 
then at the University of California at 
San Diego, and David B. Parker, then 
at Stanford University, independently 
rediscovered the algorithm. In 1986 
Rumelhart, Ronald J. Williams, also at 
the University of California at San Diego, 
and I popularized the algorithm by 
demonstrating that it could teach the 
hidden units to produce interesting rep-
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resentations of complex input patterns. 
The back-propagation algorithm has 

proved surprisingly good at training 
networks with multiple layers to per­
form a wide variety of tasks. It is most 
useful in situations in which the rela­
tion between input and output is non­
linear and training data are abundant. 
By applying the algorithm, researchers 
have produced neural networks that rec­
ognize handwritten digits, predict cur­
rency exchange rates and maximize the 
yields of chemical processes. They have 
even used the algorithm to train net­
works that identify precancerous cells 
in Pap smears and that adjust the mir­
ror of a telescope so as to cancel out 
atmospheric distortions. 

Within the field of neuroscience, Rich­
ard Andersen of the Massachusetts In­
stitute of Technology and David Zipser 
of the University of California at San 
Diego showed that the back-propagation 

algorithm is a useful tool for explain­
ing the function of some neurons in the 
brain's cortex. They trained a neural net­
work to respond to visual stimuli us­
ing back propagation. They then found 
that the responses of the hidden units 
were remarkably similar to those of real 
neurons responsible for converting vi­
sual information from the retina into a 
form suitable for deeper visual areas of 
the brain. 

Yet back propagation has had a rather 
mixed reception as a theory of how bio­
logical neurons learn. On the one hand, 
the back-propagation algorithm has 
made a valuable contribution at an ab­
stract level. The algorithm is quite good 
at creating sensible representations in 
the hidden units. As a result, research­
ers gained confidence in learning pro­
cedures in which weights are gradually 
adjusted to reduce errors. Previously, 
many workers had assumed that such 

methods would be hopeless because 
they would inevitably lead to locally 
optimal but globally terrible solutions. 
For example, a digit-recognition network 
might consistently home in on a set 
of weights that makes the network con­
fuse ones and sevens even though an 
ideal set of weights exists that would 
allow the network to discriminate be­
tween the digits. This fear supported a 
widespread belief that a learning proce­
dure was interesting only if it were guar­
anteed to converge eventually on the 
globally optimal solution. Back propa­
gation showed that for many tasks 
global convergence was not necessary 
to achieve good performance. 

On the other hand, back propaga­
tion seems biologically implausible. The 
most obvious difficulty is that informa­
tion must travel through the same con­
nections in the reverse direction, from 
one layer to the previous layer. Clearly, 

How a Neural Network Represents Handwritten Digits �eural network-con­
sisting of 256 input 

units, nine hidden 
units and 10 output units­
has been trained to recog­
nize handwritten digits. The 
illustration below shows the 
activities of the units when 
the network is presented 
with a handwritten 3. The 
third output unit is most ac­
tive. The nine panels at the 
right represent the 256 in­
coming weights and the 10 
outgoing weights for each 
of the nine hidden units. The 
red regions indicate weights 
that are excitatory, where­
as yellow regions represent 
weights that are inhibitory. 
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this does not happen in real neurons. 
But this objection is actually rather su­
perficial. The brain has many pathways 
from later layers back to earlier ones, 
and it could use these pathways in 
many ways to convey the information 
required for learning. 

A more important problem is the 
speed of the back-propagation algo­
rithm. Here the central issue is how the 
time required to learn increases as the 
network gets larger. The time taken to 
calculate the error derivatives for the 
weights on a given training example is 
proportional to the size of the network 
because the amount of computation is 
proportional to the number of weights. 
But bigger networks typically require 
more training examples, and they must 
update the weights more times. Hence, 
the learning time grows much faster 
than does the size of the network. 

The most serious objection to back 
propagation as a model of real learning 
is that it requires a teacher to supply 
the desired output for each training ex­
ample. In contrast, people learn most 
things without the help of a teacher. 
Nobody presents us with a detailed 
description of the internal representa­
tions of the world that we must learn 
to extract from our sensory input. We 
learn to understand sentences or visual 
scenes without any direct instructions. 

weights in the network appropriately. 
All these procedures share two char­

acteristics: they appeal, implicitly or ex­
pliCitly, to some notion of the quality 
of a representation, and they work by 
changing the weights to improve the 
quality of the representation extracted 
by the hidden units. 

I n general, a good representation is 
one that can be described very eco­
nomically but nonetheless contains 

enough information to allow a close ap­
proximation of the raw input to be re­
constructed. For example, consider an 
image consisting of several ellipses. Sup­
pose a device translates the image into 
an array of a million tiny squares, each 
of which is either light or dark. The im­
age could be represented simply by the 
positions of the dark squares. But oth­
er, more efficient representations are 

How can a network learn appropriate 
internal representations if it starts with 
no knowledge and no teacher? If a net­
work is presented with a large set of pat­
terns but is given no information about 
what to do with them, it apparently does 
not have a well-defined problem to solve. 
Nevertheless, researchers have devel­
oped several general-purpose, unsuper­
vised procedures that can adjust the 

The Back-Propagation Algorithm 

To train a neural network to perform some task, we 
must adjust the weights of each unit in such a way 
that the error between the desired output and the ac­

tual output is reduced. This process requires that the neural 
network compute the error derivative of the weights (EW). 
In other words, it must calculate how the error changes as 
each weight is increased or decreased slightly. The back­
propagation algorithm is the most widely used method 
for determining the EW. 

To implement the back-propagation algorithm, we must 
first describe a neural network in mathematical terms. As­
sume that unit j is a typical unit in the output layer and 
unit i is a typical unit in the previous layer. A unit in the 
output layer determines its activity by following a two­
step procedure. First, it computes the total weighted in­
put Xl' using the formula 

Xj = �)� W;j' 

where Vi is the activity level of the ith unit in the previous 
layer and wi} is the weight of the connection between the 
ith and jth unit. 

Next, the unit calculates the activity Vj using some func­
tion of the total weighted input. Typically, we use the sig­
moid function: 

1 
)) = 1 + e-Xj • 

Once the activities of all the output units have been de­
termined, the network computes the error 'E, which is de­
fined by the expression 

'E = ±L ()j -dj) 2, 
j 

where Vj is the activity level of the jth unit in the top layer 
and dj is the desired output of the jth unit. 

The back-propagation algorithm consists of four steps: 
1. Compute how fast the error changes as the activity 

of an output unit is changed. This error derivative (EA) is 
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the difference between the actual and the desired activity. 

a'E EAj = 
aYj 

= Yj-dj 

2. Compute how fast the error changes as the total input 
received by an output unit is changed. This quantity (EI) is 
the answer from step 1 multiplied by the rate at which the 
output of a unit changes as its total input is changed. 

a'E a'E dyj 
Elj = -s-- = -s-- -d = EAjyj(l-y) 

UXj UYj Xj 

3. Compute how fast the error changes as a weight on 
the connection into an output unit is changed. This quan­
tity (EW) is the answer from step 2 multiplied by the activ­
ity level of the unit from which the connection emanates. 

a'E a'E aXj 
EWij= :s-- = -s-- :s-- = EljYi 

uWij UXj uWij 
4. Compute how fast the error changes as the activity 

of a unit in the previous layer is changed. This crucial step 
allows back propagation to be applied to multilayer net­
works. When the activity of a unit in the previous layer 
changes, it affects the activities of all the output units to 
which it is connected. So to compute the overall effect on 
the error, we add together all these separate effects on 
output units. But each effect is simple to calculate. It is the 
answer in step 2 multiplied by the weight on the connec­
tion to that output unit. 

_ a'E _ � a'E aXj _ � EAi - � - £..J � � -£..J Elj Wij 
Y, j XJ Y, j 

By using steps 2 and 4, we can convert the EAs of one layer 
of units into EAs for the previous layer. This procedure can 
be repeated to get the EAs for as many previous layers as 
desired . Once we know the EA of a unit, we can use steps 
2 and 3 to compute the EWs on its incoming connections. 
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also possible. Ellipses differ in only five 
ways: orientation, vertical position, hor­
izontal position, length and width. The 
image can therefore be described using 
only five parameters per ellipse. 

Although describing an ellipse by five 
parameters requires more bits than de­
scribing a single dark square by two co­
ordinates, we get an overall savings be­
cause far fewer parameters than coor­
dinates are needed. Furthermore, we do 
not lose any information by describing 
the ellipses in terms of their parame­
ters: given the parameters of the el­
lipse, we could reconstruct the original 
image if we so desired. 

Almost all the unsupervised learning 
procedures can be viewed as methods 
of minimizing the sum of two terms, a 
code cost and a reconstruction cost. 
The code cost is the number of bits re­
quired to describe the activities of the 
hidden units. The reconstruction cost 
is the number of bits required to de­
scribe the misfit between the raw input 
and the best approximation to it that 
could be reconstructed from the activ­
ities of the hidden units. The recon­
struction cost is proportional to the 
squared difference between the raw in­
put and its reconstruction. 

Two simple methods for discovering 
economical codes allow fairly accurate 
reconstruction of the input: principal­
components learning and competitive 
learning. In both approaches, we first 
decide how economical the code should 
be and then modify the weights in the 
network to minimize the reconstruc­
tion error. 

A principal-components learning 
strategy is based on the idea that if the 
activities of pairs of input units are cor­
related in some way, it is a waste of bits 
to describe each input activity separate­
ly. A more efficient approach is to ex­
tract and describe the principal compo­
nents-that is, the components of vari­
ation shared by many input units. If we 
wish to discover, say, 10 of the princi­
pal components, then we need only a 
single layer of 10 hidden units. 

Because such networks represent the 
input using only a small number of 
components, the code cost is low. And 
because the input can be reconstructed 
quite well from the principal compo­
nents, the reconstruction cost is small. 

One way to train this type of net­
work is to force it to reconstruct an 
approximation to the input on a set of 
output units. Then back propagation 
can be used to minimize the difference 
between the actual output and the de­
sired output. This process resembles 
supervised learning, but because the 
desired output is exactly the same as 
the input, no teacher is required. 
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TWO FACES composed of eight ellipses can be represented as many points in two 
dimensions. Alternatively, because the ellipses differ in only five ways-orienta­
tion, vertical position, horizontal position, length and width-the two faces can be 
represented as eight points in a five-dimensional space. 

Many researchers, including Ralph 
Unsker of the IBM Thomas]. Watson 
Research Center and Erkki Oja of Lap­
peenranta University of Technology in 
Finland, have discovered alternative al­
gorithms for learning principal compo­
nents. These algorithms are more bio­
logically plausible because they do not 
require output units or back propaga­
tion. Instead they use the correlation 
between the activity of a hidden unit 
and the activity of an input unit to de­
termine the change in the weight. 

When a neural network uses princi­
pal-components learning, a small num-
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ber of hidden units cooperate in repre­
senting the input pattern. In contrast, 
in competitive learning, a large number 
of hidden units compete so that a sin­
gle hidden unit is used to represent any 
particular input pattern. The selected 
hidden unit is the one whose incoming 
weights are most similar to the input 
pattern. 

Now suppose we had to reconstruct 
the input pattern solely from our knowl­
edge of which hidden unit was chosen. 
Our best bet would be to copy the pat­
tern of incoming weights of the chosen 
hidden unit. To minimize the recon-/)( DACHSHUND �RETRIEVER 
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COMPETITIVE LEARNING can be envisioned as a process in which each input pat­
tern attracts the weight pattern of the closest hidden unit. Each input pattern repre­
sents a set of distinguishing features. The weight patterns of hidden units are ad­
justed so that they migrate slowly toward the closest set of input patterns. In this 
way, each hidden unit learns to represent a cluster of similar input patterns. 
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struction error, we should move the pat­
tern of weights of the winning hidden 
unit even closer to the input pattern. 
This is what competitive learning does. 
If the network is presented with training 
data that can be grouped into clusters 
of similar input patterns, each hidden 
unit learns to represent a different clus­
ter, and its incoming weights converge 
on the center of the cluster. 

Like the principal-components algo­
rithm, competitive learning minimizes 
the reconstruction cost while keeping 
the code cost low. We can afford to use 
many hidden units because even with a 
million units it takes only 20 bits to say 
which one won. 

Unfortunately, most current meth­
ods of minimizing the code cost tend 
to eliminate all the redundancy among 
the activities of the hidden units. As a 
result, the network is very sensitive to 
the malfunction of a single hidden unit. 
This feature is uncharacteristic of the 
brain, which is generally not affected 
greatly by the loss of a few neurons. 

The brain seems to use what are 
known as population codes, in which 
information is represented by a whole 
population of active neurons. That point 
was beautifully demonstrated in the 
experiments of David L. Sparks and his 
co-workers at the University of Alaba-

rameters of the face being represent­
ed by that population code. In abstract 
terms, each face cell represents a partic­
ular point in a multidimensional space 
of possible faces, and any face can then 
be represented by activating all the cells 
that encode very similar faces, so that a 
bump of activity appears in the multidi­
mensional space of possible faces. 

Population coding is attractive be­
cause it works even if some of the neu­
rons are damaged. It can do so because 
the loss of a random subset of neurons 
has little effect on the population aver­
age. The same reasoning applies if 
some neurons are overlooked when the 

In the early 1980s Teuvo Ko­
honen of Helsinki University in­
troduced an important modifi­
cation of the competitive learn­
ing algorithm. Kohonen showed 
how to make physically adja­
cent hidden units learn to rep­
resent similar input patterns. 
Kohonen's algorithm adapts 
not only the weights of the win­
ning hidden unit but also the 
weights of the winner's neigh­
bors. The algorithm's ability to 
map similar input patterns 
to nearby hidden units sug­
gests that a procedure of this 
type may be what the brain 

POPULATION CODING represents a multiparameter ob­
ject as a bump of activity spread over many hidden 
units. Each disk represents an inactive hidden unit. 
Each cylinder indicates an active unit, and its height de­
picts the level of activity. 

system is in a hurry. Neurons 
communicate by sending dis­
crete spikes called action po­
tentials, and in a very short 
time interval many of the "ac­
tive" neurons may not have 
time to send a spike. Neverthe­
less, even in such a short inter­
val, a population code in one 
part of the brain can still give 
rise to an approximately cor­
rect population code in another 
part of the brain. 

At first sight, the redundancy 
in population codes seems in­
compatible with the idea of 
constructing internal represen­
tations that minimize the code 

uses to create the topographic maps 
found in the visual cortex [see "The Vi­
sual Image in Mind and Brain," by Se­
mir Zeki, page 68]. 

Unsupervised learning algorithms can 
be classified according to the type of 
representation they create. In principal­
components methods, the hidden units 
cooperate, and the representation of 
each input pattern is distributed across 
all of them. In competitive methods, 
the hidden units compete, and the rep­
resentation of the input pattern is lo­
calized in the single hidden unit that is 
selected. Until recently, most work on 
unsupervised learning focused on one 
or another of these two techniques, 
probably because they lead to simple 
rules for changing the weights. But the 
most interesting and powerful algo­
rithms probably lie somewhere between 
the extremes of purely distributed and 
purely localized representations. 

Horace B. Barlow of the University of 
Cambridge has proposed a model in 
which each hidden unit is rarely active 
and the representation of each input 
pattern is distributed across a small 
number of selected hidden units. He 
and his co-workers have shown that this 
type of code can be learned by forcing 
hidden units to be uncorrelated while 
also ensuring that the hidden code al­
lows good reconstruction of the input. 

mao While investigating how the brain 
of a monkey instructs its eyes where 
to move, they found that the required 
movement is encoded by the activities 
of a whole population of cells, each of 
which represents a somewhat different 
movement. The eye movement that is 
actually made corresponds to the aver­
age of all the movements encoded by 
the active cells. If some brain cells are 
anesthetized, the eye moves to the point 
associated with the average of the re­
maining active cells. Population codes 
may be used to encode not only eye 
movements but also faces, as shown by 
Malcolm P. Young and Shigeru Yamane 
at the RIKEN Institute in Japan in recent 
experiments on the inferior temporal 
cortex of monkeys. 

F or both eye movements and fac­
es, the brain must represent enti­
ties that vary along many differ­

ent dimensions. In the case of an eye 
movement, there are just two dimen­
sions, but for something like a face, 
there are dimenSions such as happiness, 
hairiness or familiarity, as well as spatial 
parameters such as position, size and 
orientation. If we associate with each 
face-sensitive cell the parameters of the 
face that make it most active, we can av­
erage these parameters over a popula­
tion of active cells to discover the pa-
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cost. Fortunately, we can overcome this 
difficulty by using a less direct mea­
sure of code cost. If the activity that en­
codes a particular entity is a smooth 
bump in which activity falls off in a 
standard way as we move away from 
the center, we can describe the bump 
of activity completely merely by specify­
ing its center. So a fairer measure of 
code cost is the cost of describing the 
center of the bump of activity plus the 
cost of describing how the actual activi­
ties of the units depart from the de­
sired smooth bump of activity. 

Using this measure of the code cost, 
we find that population codes are a con­
venient way of extracting a hierarchy of 
progressively more efficient encodings 
of the sensory input. This point is best 
illustrated by a simple example. Con­
sider a neural network that is present­
ed with an image of a face. Suppose the 
network already contains one set of 
units dedicated to representing noses, 
another set for mouths and another set 
for eyes. When it is shown a particular 
face, there will be one bump of activity 
in the nose units, one in the mouth 
units and two in the eye units. The lo­
cation of each of these activity bumps 
represents the spatial parameters of the 
feature encoded by the bump. Describ­
ing the four activity bumps is cheaper 
than describing the raw image, but it 
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would obviously be cheaper still to de­
scribe a single bump of activity in a set 
of face units, assuming of course that 
the nose, mouth and eyes are in the cor­
rect spatial relations to form a face. 

This raises an interesting issue: How 
can the network check that the parts 
are correctly related to one another to 
make a face? Some time ago Dana H. 
Ballard of the University of Rochester 
introduced a clever technique for solv­
ing this type of problem that works 
nicely with population codes. 

If we know the position, size and ori­
entation of a nose, we can predict the 
position, size and orientation of the face 
to which it belongs because the spa­
tial relation between noses and faces 
is roughly fixed. We therefore set the 
weights in the neural network so that a 
bump of activity in the nose units tries 
to cause an appropriately related bump 
of activity in the face units. But we also 
set the thresholds of the face units so 
that the nose units alone are insufficient 
to activate the face units. If, however, 
the bump of activity in the mouth units 
also tries to cause a bump in the same 
place in the face units, then the thresh­
olds can be overcome. In effect, we have 
checked that the nose and mouth are 
correctly related to each other by check­
ing that they both predict the same spa­
tial parameters for the whole face. 

This method of checking spatial re­
lations is intriguing because it makes 
use of the kind of redundancy between 
different parts of an image that unsu­
pervised learning should be good at 
finding. It therefore seems natural to 
try to use unsupervised learning to dis­
cover hierarchical population codes for 
extracting complex shapes. In 1986 
Eric Saund of M. LT. demonstrated one 
method of learning simple population 
codes for shapes. It seems likely that 
with a clear definition of the code cost, 
an unsupervised network will be able 
to discover more complex hierarchies 
by trying to minimize the cost of cod­
ing the image. Richard Zemel and I at 
the University of Toronto are now in­
vestigating this possibility. 

By using unsupervised learning to ex­
tract a hierarchy of successively more 
economical representations, it should be 
possible to improve greatly the speed 
of learning in large multilayer networks. 
Each layer of the network adapts its in­
coming weights to make its representa­
tion better than the representation in 
the previous layer, so weights in one 
layer can be learned without reference 
to weights in subsequent layers. This 
strategy eliminates many of the interac­
tions between weights that make back­
propagation learning very slow in deep 
multilayer networks. 

IMAGE OF NOSE AND MOUTH 

MOUTH UNITS 
BUMPS OF ACTIVITY in sets of hidden units represent the image of a nose and a 
mouth. These population codes will cause a bump in the face units if the nose and 
mouth have the correct spatial relation (left). If not, the active nose units will try to 
create a bump in the face units at one location while the active mouth units will do 
the same at a different location. As a result, the input activity to the face units does 
not exceed a threshold value, and no bump is formed in the face units (right). 

All the learning procedures discussed 
thus far are implemented in neural net­
works in which activity flows only in the 
forward direction from input to output 
even though error derivatives may flow 
in the backward direction. Another im­
portant possibility to consider is net­
works in which activity flows around 
closed loops. Such recurrent networks 
may settle down to stable states, or they 
may exhibit complex temporal dynam­
ics that can be used to produce sequen­
tial behavior. If they settle to stable 
states, error derivatives can be comput­
ed using methods much simpler than 
back propagation. 

Although investigators have devised 
some powerful learning algorithms that 
are of great practical value, we still do 
not know which representations and 
learning procedures are actually used 
by the brain. But sooner or later com­
putational studies of learning in artifi­
cial neural networks will converge on 

the methods discovered by evolution. 
When that happens, a lot of diverse 
empirical data about the brain will sud­
denly make sense, and many new ap­
plications of artificial neural networks 
will become feasible. 
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