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Memory stretches over a lifetime. In controlled laboratory settings,
the hippocampus and other medial temporal lobe brain structures
have been shown to represent space and time on the scale of
meters and seconds. It remains unclear whether the hippocampus
also represents space and time over the longer scales necessary for
human episodic memory. We recorded neural activity while partic-
ipants relived their own experiences, cued by photographs taken
with a custom lifelogging device. We found that the left anterior
hippocampus represents space and time for a month of remem-
bered events occurring over distances of up to 30 km. Although
previous studies have identified similar drifts in representational
similarity across space or time over the relatively brief time scales
(seconds to minutes) that characterize individual episodic memories,
our results provide compelling evidence that a similar pattern of
spatiotemporal organization also exists for organizing distinct
memories that are distant in space and time. These results further
support the emerging view that the anterior, as opposed to
posterior, hippocampus integrates distinct experiences, thereby pro-
viding a scaffold for encoding and retrieval of autobiographical
memories on the scale of our lives.

hippocampus | representational similarity analysis | lifelogging |
episodic memory

The hippocampus plays a critical role in remembering the
events of our lives (1). Direct evidence from single-neuron

recordings in rats indicates that cells in the hippocampus fire in
specific spatial locations (2–6) or at specific times during a
temporal delay (7, 8). Single-neuron and functional MRI (fMRI)
studies in individuals navigating virtual environments have con-
firmed that cells coding for spatial location are also present in
the human hippocampus (9–11). Similarly, place-responsive cell
activity recorded in the hippocampus of patients with epilepsy
during navigation of a virtual town was shown to reinstate during
episodic memory retrieval of the previous virtual navigation (12).
Together, these studies provide evidence that the same neurons
in the medial temporal lobe (MTL) that are active during an
experience also help represent the memory for that experience.
These results, however, are limited to simple events in laboratory
settings that occur on the scale of minutes and meters, thereby
leaving unanswered whether we harness similar mechanisms in
more natural settings and over larger temporal and spatial scales.
Recent studies have used more naturalistic designs with in-

cidentally acquired memories recorded via lifelogging devices
that automatically capture photographs from the participants’
lives (13, 14). The typical finding is increased hippocampal ac-
tivation when participants view images from their cameras as
opposed to images from other participants’ cameras (15–17), and
this activation decays over the course of months (14). Still, there
is no evidence to date that the hippocampus or other MTL
structures actually represent space or time of autobiographical
experiences. We addressed this question by having participants
relive their own real-life experiences in the fMRI scanner. We
then used multivariate pattern analysis (18) to identify regions of
the MTL that represent space and time of these remembered
experiences. If a brain region represented either space or time of

personal experiences, the distances between neural activity pat-
terns would correlate with the spatial or temporal proximity of
the original experiences.

Results
Nine participants wore smart phones (Fig. S1) with our custom
lifelogging software that captured images along with their global
positioning system (GPS) coordinates and timestamps (19). We
collected an average of 5,414 ± 578 SEM images per subject,
primarily from the Columbus, Ohio metropolitan area (Fig. 1A).
We selected 120 images from each participant’s data to present
to the participant in the fMRI scanner (Methods). Participants
were instructed to “try to remember the event depicted in the
picture, and try to mentally relive your experience” while viewing
each image for 8 s. Focusing only on the memories subjects
recalled (63.4% ± 4.7 SEM per subject; Fig. S2), we calculated
the temporal and geospatial distance for each pair of events and
the corresponding neural distances for four bilateral MTL re-
gions and one bilateral primary visual cortex region of interest
(ROI) (Fig. 1 B–D). We excluded image pairs taken close to-
gether in space or time to prevent directly overlapping events
(Methods and Fig. S3). After applying these selection criteria, we
had an average of 76.1 ± 5.7 SEM images and 1,995.7 ± 261.5 SEM
image pairs per subject.
We applied representational similarity analysis to identify

whether regions of the MTL reflect the spatial and temporal
dimensions of episodic memories (18). To quantify the role of
multiple factors in a single model, we implemented a general
linear model (GLM) within each subject as the basic test of our
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representational similarity analysis. Thus, in the eight MTL and
two primary visual regions, we tested the hypothesis that differ-
ences in the patterns of neural activity while remembering events
are correlated with the spatial and temporal distance separating
those events. Because the temporal distance between recollec-
tion of events in the scanner could confound temporal distance
between the events themselves, we included the time between
image presentations as a nuisance regressor. Based on work
implying scale-free neural representation of time and space (20),
we calculated the log of the spatial and temporal distances be-
tween events and the times between presentations in the scanner.
The pairwise nature of the distances in our analysis violates the
assumption of independent samples, so we used nonparametric
permutation to test for significance (21). We permuted the
neural distances with respect to the behavioral distances 10,000
times to generate a null dataset from which we calculated non-
parametric P values, which we then Bonferroni-corrected based

on the 10 regions in our analysis. We found that spatial distance
(corrected P = 0.021), temporal distance (corrected P = 0.010),
and their interaction (corrected P = 0.038) were significantly
correlated with neural distance in the left anterior hippocampus
(Fig. 2 and Table S1). No significant correlations were found for
the nonrecalled events. These results indicate that the left an-
terior hippocampus represents space and time for memories of
real-life experiences at larger scales than ever before tested.
Although we attempted to remove any pairs of images that

were from the same (or proximal) episode, it is still possible that
some aspect of the images themselves could account for the
systematic changes in neural activity in the left anterior hippo-
campus. As a control, we compared the magnitude of the spatial
and temporal effects in the left anterior hippocampus with
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Fig. 1. Overview of study method. (A) Heat map of locations where images
from all subjects were taken. (B) MTL ROIs (red, anterior hippocampus;
yellow, middle hippocampus; blue, posterior hippocampus; green, para-
hippocampus). (C) Subset of the data collected from a single participant.
Each red point on the map corresponds to an image shown to the partici-
pant in the scanner. Four sample images are displayed, along with the time
taken, with the lines indicating the location. The heat maps show the single-
trial beta corresponding to each image. (D) Example of the spatial, temporal,
and neural distance matrices derived from these four sample images. (Map
data courtesy of the US Geological Survey.)
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Fig. 2. Space and time are correlated with neural distance in the left an-
terior hippocampus. (A and B) Each dot represents a pair of presented im-
ages. The black lines show the estimated neural distance based on the
regression for each subject. The red line shows the estimated neural distance
averaged across subjects. Spatial distance (A) and temporal distance (B) are
both correlated with neural distance in the left anterior hippocampus after
removing the effects of other factors in the model (i.e., after isolating the
effect of space or time).
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equivalently sized ROIs in the right and left primary visual cor-
tex. The spatial and temporal distances were more strongly as-
sociated with neural distance in the left anterior hippocampus
than in either the right anterior hippocampus or the right or left
primary visual cortex (Fig. 3, Fig. S4, and SI Results), suggesting
that our results are not driven simply by the image properties
alone. We also ruled out the possibility that recency, proximity,
or contiguity effects were responsible for the result we observed
(Figs. S5–S7 and SI Results).

Discussion
We have shown that the left anterior hippocampus represented
the spatial and temporal dimensions of remembered experiences
for distances between 100 m and 30 km and for times between
15 h and 1 mo. Although previous studies have identified similar
drifts in representational similarity across space or time over the
relatively brief time scales (seconds to minutes) that characterize
individual episodic memories (22–24), our results provide com-
pelling evidence that a similar pattern of spatiotemporal orga-
nization also exists for organizing distinct memories that are
distant in space and time. We did not observe a significant effect
of recency or proximity of the images on the likelihood that the
associated episodes would be recalled. This finding indicates that
the relationship we observed between activity patterns in the left
anterior hippocampus and space and time is unlikely to be
caused by simple recency or proximity effects.
We did find that spatial or temporal contiguity between a

recalled image and a subsequently presented image increased the
likelihood that the subsequently presented item would be recalled,
but only when we included pairs of images from the same event in
our analysis. When we excluded pairs of images from the same
event, or when we applied the limits on spatial and temporal
distances between pairs of images used in our main analysis, we
did not find that spatial or temporal contiguity effects were sig-
nificant. Taken together with the absence of a significant recency
or proximity effect, the most likely explanation for the observed
relationship between patterns of neural activity in the left anterior
hippocampus and spatial and temporal distance is that, in fact,
information about spatial and temporal distances is represented in
the left anterior hippocampus.
There are some important limitations in the work that we have

presented here. By chance, our sample is composed entirely of
female participants; therefore, we cannot say with certainty that

these results will be generalizable to representation of space and
time in males. Another limitation of this work is the spatial
resolution of our fMRI, which prevents us from examining the
roles of distinct hippocampal subfields. We are also unable to
analyze the representation of space and time within events be-
cause relatively few images from the same event were presented
to each subject. A future study with a more balanced sampling of
within- and between-event images may be able to distinguish
representation of space and time at these different scales.
Prior fMRI results examining judgment of landmark locations

demonstrated that left anterior hippocampal activity is para-
metrically related to the real-world distance between the cur-
rently presented landmark and one that was just seen on the
previous trial, providing indirect evidence that the left anterior
hippocampus represents spatial information (25). However, both
Morgan et al. (25) and a subsequent study (26) were unable to
detect metric-based information about spatial distances in the
anterior hippocampus using multivoxel pattern analysis. These
studies did not use images that represented participants’ previous
experiences, so they were unable to include time or the interaction
of time and space in their model. We found that neural activity in
the left anterior hippocampus correlated with space, time, and
their interaction, indicating that mental representations of space
and time are perhaps not as distinct as we generally conceive them
to be.
Fueling a long-standing debate over the lateralization of epi-

sodic memory processes (27), recent work in mice showed that
the left, but not the right, hippocampus was essential for asso-
ciative spatial long-term memory (28), and, as mentioned above,
recent work demonstrated that processing of spatial information
may be left-lateralized in the human hippocampus as well (25).
To test whether our data followed a similar pattern, we com-
pared the left and right anterior hippocampi directly. We found
that the left anterior hippocampus represents space and time
significantly better than the right anterior hippocampus (Fig. 3).
This finding extends the emerging theory of hippocampal later-
alization with evidence that the memory representations of real-
life events are left-lateralized in the human hippocampus.
In rats, the dorsal hippocampus (analogous to the human pos-

terior hippocampus) represents shorter temporal and spatial
scales, whereas the ventral hippocampus (analogous to the human
anterior hippocampus) represents longer scales (29–31). Our
finding of long spatial scale representation in the human anterior
hippocampus, combined with the established involvement of the
human posterior hippocampus in memory for shorter spatial
scales (32, 33), supports the hypothesis that humans have a gra-
dient of spatial scale along the anteroposterior axis of the hip-
pocampus. Our results suggest that the the maximum scale of
spatial representation in the human hippocampus is at least the
30 km we observed here, which is considerably larger than the
maximum of about 10 m observed in rats (29). It is possible,
however, that the maximal scale of representation is not limited by
biology, but by experience. Humans can regularly travel tens, if not
hundreds, of kilometers in short periods of time, and so it is in
some ways unsurprising that the maximal scale of representation
in humans is significantly larger than in rodents raised in a labo-
ratory, which travel, at most, tens of meters in a day.
Taken together, our results point to a critically important role of

the left anterior hippocampus in representing our past experiences
on the scale of our lives. These large spatial scale representations
of space and time give structure to our memories, which may allow
us to search our past (34) or imagine the future (35) efficiently,
and to make associations and generalizations across non-
overlapping events (30, 31). Based on our current understanding
of hippocampal representations, place cells provide spatial re-
lationships (5) and time cells provide temporal relationships (7),
yet there is also evidence from recordings in the CA1 subregion of
the hippocampus that place codes change over hours and days

Fig. 3. Comparison of space and time representations across the brain re-
gion. Space and time are significantly more strongly related to neural dis-
tance in the left anterior hippocampus (LAH) than in the right anterior
hippocampus (RAH) or the right or left primary visual cortex (RV1 and LV1,
respectively). *P < 0.05; **P < 0.01.
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(36) to weeks (37). The conjunctive spatiotemporal representations
we observed suggest space and time are more intimately related in
the hippocampus than thought before, providing the thread for
weaving the episodic memories of our lives (38).

Methods
Device and Software. Each participant carried an Android-based smartphone
in a pouch attached to a neck strap as shown in Fig. S1 from morning until
evening. The smartphone was equipped with a custom lifelogging applica-
tion that acquired image, time, audio (obfuscated), GPS, accelerometer, and
orientation information throughout the day. The participants had control
over what data they wanted to share with the experimenters. They were
instructed on how to delete data from the phone. They were also allowed to
turn the application off or to place a flap over the camera lens at any time
during the data collection period when they felt the need for privacy.

The lifelogging application was written by our programmers using Java
(Oracle Corporation) to run in the background as a service. Data acquisition
times can be fixed or variable, and they can be determined by a movement-
based trigger to preserve battery resources when the user is not very active.
When the smartphone detectsWiFi and is connected to a charger, it sends the
collected and stored data automatically to a remote server. This transmission
usually happened once per day at the end of the day because users charged
the phone overnight. The data were sent in batch mode via SFTP (Secure File
Transfer Protocol) for added security and remained inaccessible to other
users in the system.

Participants. Participants were recruited using advertisements placed on
notice boards in multiple buildings on the main campus of The Ohio State
University. To join the study, potential participants had to be willing to
participate in the lifelogging data collection and to be willing and able to
undergo an MRI scan. Potential participants with contraindications for re-
ceiving anMRI scanwere excluded. Theywere compensated at the rate of $10
per day for wearing the smartphone to collect data and at the rate of $15 per
hour for the fMRI session. We recruited 10 participants (aged 19–26 y, mean
age = 21.4 y; nine female), nine of whom wore the smartphone for ∼1 mo.
The tenth participant wore the smartphone for 2 wk. One participant (male)
did not complete the fMRI session due to discomfort in the scanner; there-
fore, we did not include the data for that participant in any of our analyses.
Our study has a similar number of participants as other fMRI studies using
lifelogging devices, such as the study of Cabeza et al. (15), which had 13
participants and only collected lifelogging data for 10 d, and the study of
Milton et al. (14), which had 10 participants and only collected lifelogging
data for 2 d, although there was a 5-mo follow-up in their study.

Ethics Statement. The research protocol was reviewed and approved by the
Institutional Review Board at The Ohio State University. Written informed
consent was obtained from all participants, once before the lifelogging data
collection phase and once before the fMRI session. Consent was obtained
from one participant to use images and locations from that individual’s
lifelogging data for Fig. 1.

Other Behavioral Tasks. At the end of each day, the smartphone was con-
nected to a power outlet to be charged overnight. When connected to the
charger and to the Internet, the smartphone automatically uploads data to
our server. The images were viewed on a web interface, whose link was
uniquely generated for each participant and provided to the participant
before data collection. Participants accessed their images on the web in-
terface via a unique link, where they segmented their stream of images into
distinct episodes and tagged each episode with a set of tags chosen from a
drop-down menu (39). For each episode, they also provided a brief title
and description.

After they collected data for 2wk, participants came into the laboratory on
the Thursday of the third week for a weekly discrimination test. Each par-
ticipant’s test was based on images drawn from her own lifelogs. The weekly
discrimination task was described to the participants, and they were told
that only images from the weekdays of the preceding 2 wk would be pre-
sented on the computer screen. The pictures remained on the screen while
they made the weekly judgment, and they could use as much time as they
needed to respond. The results of this behavioral task will be analyzed and
presented separately.

GPS Data. The GPS receivers in our lifelogging smartphones were unable to
record GPS coordinates when participants were inside some buildings. In
these cases, we attempted to determine the coordinates based on the

participant’s description of the location and by traveling to the approximate
location where the image was taken and searching the area until the scene
captured in the image could be identified. We determined the approximate
area to search based on GPS data acquired before or after the image with
missing GPS data. Once the location had been determined, GPS coordinates
were obtained from Google Maps.

MRI Acquisition.MRI data were acquired on a 3-T SiemensMagnetom Trio Tim
system with a 16-channel head coil. Anatomical images were acquired with
a sagittal, T1-weighted, magnetization prepared rapid acquisition gradient
echo sequence [1.0-mm isotropic voxels, repetition time (TR) = 1,900 ms,
echo time (TE) = 4.68 ms, 160 slices with field of view (FoV) = 256 mm].
Functional images were acquired with an echoplanar imaging sequence
(2.5-mm isotropic voxels, TR = 3,000 ms, TE = 28 ms, flip angle = 80°, 47 slices
with FoV = 250 mm).

Stimuli Selection.We selected 120 images from each subject’s lifelogging data
to present to the subject in the scanner. First, we excluded pictures of floors/
ceilings/walls, blurry images, and images with inadequate exposure. Then,
we selected images that appeared to have enough detail that they could act
as cues for distinct episodes. From this subset of images, we selected images
representing events that spanned the entire period each participant wore
the lifelogging device, with as uniform sampling of events as possible. We
did not take spatial location into account when selecting the images.

fMRI Experiment. In the scanner, subjects were instructed that they would be
viewing images from the experience sampling experiment they recently
completed and told that each imagewould be displayed for 8 s. Subjects were
asked to “. . . try to remember the event depicted in the picture, and try to
relive your experience mentally.” After the remembrance period for each
event, subjects were asked if they remembered the event (“yes” or “no”)
and how vividly they recalled the event (“lots of detail” or “very little de-
tail”). Participants were given 2.5 s to respond to each of those questions
using a button box held in their right hand. The images were presented in
random order, and the task was split into eight runs with 15 images in each
run. With each image presented for 8 s and each question for presented 2.5 s
with a 0.5-s interstimulus interval, each trial took a total of 14 s. The in-
tertrial interval was jittered uniformly between 4 and 10 s, allowing for a
true event-related design.

fMRI Processing. fMRI processing was carried out using Analysis of Functional
NeuroImages (AFNI) (40) and Functional Magnetic Resonance Imaging of the
Brain (FMRIB) Software Library (FSL) (41). The T1-weighted anatomical im-
age was intensity-normalized, skull-stripped, and warped to a 2.5-mm MNI-
152 template using 3dQwarp. We selected a 2.5-mm template to match the
resolution of the functional scans. For the functional scans, we dropped the
first two TRs of each run, then removed spikes with 3ddespike and tempo-
rally shifted all of the slices in each volume to the start of the TR using
3dTshift with Fourier interpolation. We then warped the functional scans to
template space, blurred them to 4-mm FWHM using 3dBlurtoFWHM, and
scaled the voxel values to a mean of 100 (maximum of 200) for each run. At
this point, we performed independent component analysis of each func-
tional run with FSL’s MELODIC. Components were visually inspected to
identify noise components following published guidelines (42). Noise com-
ponents were regressed out of the functional runs using FSL’s fsl_regfilt
command. We then ran a regression with restricted maximum likelihood
estimation of temporal autocorrelation structure on the filtered functional
runs using 3dDeconvolve and 3dREMLfit to generate single-trial betas for
each reminiscence trial and to regress out the effects of the mean and de-
rivative of motion terms, as well as cerebrospinal fluid signal. The regressor
for each image presentation was an 8-s block convolved with a hemody-
namic response function. The neural activity of the question prompts were
accounted for with a 2.5-s block convoluted with a hemodynamic response
function. We modeled response processing and motor activity related to the
button push with a set of nine tent functions over the 16 s after the question
response. Including these tent functions in our model allowed us to estimate
the motor response robustly for each subject so that the signal from the
motor responses did not contaminate the single-trial beta fit for each
reminiscence period. Lastly, we regressed out local white matter signal with
3dAnaticor. Researchers were not blinded during preprocessing or
subsequent analyses.

Previous work has shown that the MTL represents space and time for short
distances, so we focused our analysis on regions in the MTL using ROI analysis
because the shape of the MTL structures is often problematic for multi-
ple comparison correction procedures. We identified four ROIs from each
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hemisphere in the MTL: anterior hippocampus, middle hippocampus, posterior
hippocampus, and parahippocampal cortex. The parahippocampal ROIs were
taken from the Harvard-Oxford subcortical atlas (43), down-sampled to
2.5 mm. The parahippocampal ROI in this atlas includes the parahippocampal,
perirhinal, and entorhinal cortices. The hippocampal ROIs were derived by
resampling the Harvard-Oxford subcortical atlas to 2.5 mm, extracting the
hippocampal regions, and dividing these regions into thirds based on their
anteroposterior extent. ROIs from the primary visual cortex in each hemi-
sphere were taken from the Jülich atlas in FSL (44, 45) and resampled to
2.5 mm. We selected the most medial, posterior portion of the primary visual
cortex to capture cortical regions corresponding to foveal vision with an ROI of
similar size to our MTL ROIs.

Representational Similarity Analysis. For each pair of images presented to the
subjects, we calculated the geodesic distance in meters between the two GPS
coordinates and the difference in time in seconds. Geodesic distance was
calculated using the GeoPy Python package. Image pairs with spatial dis-
tances less than 100 m were excluded because these distances are below the
reliability of the GPS radios in these smartphones. Image pairs with temporal
distances below 15.6 h were excluded based on prior work because of a
discontinuity in the spatiotemporal distribution of image pairs (19) (Fig. S2B).
The discontinuity between 14- and 16-h results from subjects taking off their
cameras to sleep. This gap is propagated through the rest of the results as a
relative lack of image pairs that are multiples of ∼15 h apart. In prior work,
we analyzed the structure of lifelogged images and demonstrated that
image pairs taken from identical spatiotemporal locations occupied a lower
dimensional manifold than those image pairs taken from separate spatio-
temporal locations (19). By removing image pairs separated by less than
100 m and 15.6 h, we reduced the possibility that the images themselves
would give rise to the present results as a consequence of within- and be-
tween-episode image properties. Some subjects spent time out of town
during the period of data collection, resulting in a small portion of image
pairs with spatial distances greater than 30 km; these image pairs were also
excluded. Images that were blurry or contained reflections of the subjects
were also excluded.

In our figures and description of our analysis, spatial distance is referred to
as space and temporal distance is referred to as time. In each ROI, neural
distance for each image pair was calculated as 1 minus the correlation be-
tween the voxel-level single-trial betas for the trials corresponding to those

image pairs. Neural distances were z-scored within subjects. In each ROI in
each subject, we then ran a GLM with the following model:

neural  distance= α+ βtimelog10ðtimeÞ+ βspacelog10ðspaceÞ
+ βtime:spacelog10ðtimeÞ*log10ðspaceÞ
+ βscannerlog10ðscannertimeÞ+ e.

We used the log of time and space based on previous literature that has
shown a power-law relationship for neural representations (20). The scanner
time was the number of seconds between presentation of the images during
the fMRI experiment. In each ROI, we performed a t test on the betas from
the subject-level GLMs to determine if they were significantly different from
zero across subjects. We used nonparametric permutation to test for sig-
nificance (21) because the pairwise nature of the distances in our analysis
violated the assumption of independent samples. Neural data were per-
muted with respect to behavioral data within subjects. This process was
repeated for 10,000 permutations of the neural data. The significance of t
values was determined as the ratio of the number of permutations with
higher absolute value of t values in that ROI for that term divided by the
total number of permutations. We then applied the Bonferroni correction to
control for the number of ROIs tested (eight MTL ROIs plus two bilateral
primary visual cortex ROIs for a total of 10). To visualize the relationship
between each term and the neural distance, we isolated the portion of the
neural distance that was associated with changes in that term by subtracting
the effects of the other terms as estimated on a subject level from the neural
distance for each subject. For example, in the graphs for the relationship
between space and neural distance, the neural distance has the estimates for
the intercept, time, interaction of time and space, and time between pre-
sentations in the scanner subtracted out. To compare the significance of
different regions for each term, we used the difference between t values
between the two regions for that term in each of the 10,000 permutations
as the null distribution to generate P values.
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