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Theories of time and space in memory have traditionally

focused on their role in dividing experience into discrete

episodes, despite the arbitrary nature of these divisions. We

offer an alternative characterization that focuses on the

fundamentally predictive role of perception and memory. In this

account, perceptual hierarchies in sensory cortex detect

patterns of feature-change across a logarithmic continuum of

scales in time and space, which allows them to efficiently

converge on nuanced, yet short-range, predictions of the

present situation. Time and space emerge from this continuum

as representations of feature-distance that provide a measure

of the relevance of non-simultaneous experiences, allowing for

long-range associations, mental time-travel, and predictions

that go far beyond the immediate moment. This reframing

of the nature and role of time and space in memory has

implications for both the interpretation of existing findings and

the design of future experiments.
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Introduction
Humans are drawn to strict divisions and clear categories,

which help us to simplify the otherwise intractable com-

plexities we encounter in the world. Yet these same

simplifying constructs may become a stumbling block

to true comprehension when they impoverish meaningful
complexity. A foundational concept in the field of mem-

ory is the categorical distinction between episodic and

semantic memory [1]. However, the very notion of an

episodic memory presupposes that an experience is

bound to a specific time and space to produce discrete

‘episodes’ [2]. This distinction rests on deeper assump-

tions that ‘time’ and ‘space’ actually exist in the brain as
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representational scaffolds onto which experience can be

bound. Moreover, the temporal and spatial components of

episodic memory are frequently treated in isolation [3],

even though it has not been firmly established that they

are meaningfully separable.

We argue here that the apparent division of experience

into discrete episodes is actually an over-simplification

within the basic mechanisms of perception and memory.

The flow of experience is continuous across temporal and

spatial scales, from milliseconds to decades, and from

millimeters to hundreds of kilometers. Given the need to

adapt predictively across this full continuum of scales, the

basic representations of our experience, and our episodic

memories for that experience, must also span this contin-

uum. This proposition does not imply that there are no

meaningful boundaries in our experience (see [4] for

discussion), but only that the establishment of a spectrum

of spatiotemporal scales necessarily precedes, and pro-

vides the fundamental substrate for, the definition and

identification of such boundaries.

In discussing this idea we also challenge the current

discourse on representation in hierarchical sensory corti-

cal streams, such as the ventral temporal stream, in order

to move away from models of discrete regional speciali-

zation toward a continuous spectrum of scale-sensitivities.

Finally, we position the neural representations of time

and space as emergent, rather than elemental, properties

in the brain, founded on a gradient of experiential scales

established in the architecture of the medial temporal

lobe.

To ground this proposal, we must first discuss how our

senses and all layers of perceptual processing are basically

change-detectors operating on continuous streams of low-

level features. From this starting point, we must solve the

evolutionary challenge of preparing adaptively for the

future by making predictions on these feature-changes.

Detailing how we accomplish this efficiently will lead us to

the alternate memory paradigms that we champion here.

Prediction machines
The function of perception is to predict changes in

sensory streams

We are accustomed to think of the brain primarily as a

device for recognizing and responding to the higher-level

wholes of exogenous experience: not only object recog-

nition [5], but also recognition of scenes, events, and the

subjectively ‘real’ dimensions of time and space. In this
www.sciencedirect.com
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framework, sensory processing streams in cortex are

conceptualized as hierarchies of distinct processing cen-

ters, each of which responds to a discrete higher-order

category. For example, observations that anatomical loci

in the ventral temporal cortex respond to specific vis-

ual categories (e.g., lateral occipital cortex, LOC, for

objects [6], parahippocampal place area, PPA, for scenes

[7], among others) have been taken as evidence

that the primary role of these loci is to represent those

categories [8].

But a living organism does not have direct access to any of

these complex structures in its environment. It must

extract them from experience mediated entirely by the

streams it receives through its sensory receptors, each of

which conveys only the intensity of a simple sensory

feature, like the luminance of light or the pressure of

dermal contact, as it varies continuously over time. Thus,

at the input level, neither category, nor time, nor space,

nor any of the other high-level ‘bins’ of content exist to

the brain, only the content itself (a set of continuous,

single-feature inputs). Furthermore, as we argue below,

recognizing high-level phenomena is not even percep-

tion’s fundamental objective, but is rather an instrumental

byproduct of a living system’s attempt to predict relevant

fluctuations in these sensory streams in an energy-effi-

cient manner.

The evolutionary fitness of a living system depends on its

ability to efficiently reduce its entropy through interac-

tions with its environment. Even though the universe

exhibits a global trend toward increasing entropy, a living

system can maintain or even reduce its own entropy, and

therefore persist and propagate in the face of constant,

disordering external perturbations, by identifying and

exploiting likely environmental changes. In other words,

they can proactively adapt themselves to survive ener-

getic fluctuations from the environment, thereby correlat-
ing their own behavior with the environment [9–11].

Thus, the environment can be thought of as a state

machine, and the organism’s principal adaptive challenge

is to infer and encode that state machine’s transition

probability structure, using its set of sensory feature

inputs as the only available proxy for learning those states

and transitions [12]. The resulting correlation between

information stored in the system and probabilistically

likely regularities in the environment can be considered

the rudiment of memory that is harnessed by a living

system to guide behavior.

So the primary function of perception is not actually to

represent familiar categories of content, but rather to

register and predict changes in that content. This accords

well with the established principle that repetitive content

is disregarded through neural habituation, with the

retained information representing only the change from

what was predicted [13]. Thus, every aspect of the
www.sciencedirect.com 
architecture of our sensory processing must ultimately

serve to predict the future of a continuous stream of sensory
features based on changes it has observed in that stream in the
past.

Perceptual cortex differentiates scales, not categories

We therefore have reason to doubt the characterization of

perceptual hierarchies as chains of loci representing dis-

crete categories and properties. To the extent perceptual

hierarchies do construct discrete representations of

higher-order categories, we hold that it is likely only a

mechanism in service of prediction of feature changes

across a continuum of scales. In this view, each interval

along the continuum of perceptual processing in the

ventral temporal stream and medial temporal lobe is

simply specialized for learning the patterns of feature-

change that occur over a particular interval of temporal

and, as we will argue below, spatial scales [14–17].

Take, for example, an office. An office is not a discrete

whole, but rather a collection of objects (e.g., walls, floor,

computer, coffee mug, desk, chairs, bookshelves, among

others). Neurally, an office as a whole tends to activate

scene-sensitive regions such as PPA, while its constitu-

ents activate object-sensitive regions such as LOC. We

assert that this difference in selectivity stems from the

duration of time over which each region integrates the

continuum of scales to register behaviorally-relevant

changes in sensory features.

The behavioral significance of timescale can be easily

illustrated in the office example depicted in Figure 1. The

timescale over which our senses stably interact with

individual objects, such as a coffee mug, is short; our

eyes, as they make numerous saccades around the area,

only process the mug for a matter of partial or full seconds,

and our hands typically manipulate the mug for similar

periods. On these short timescales, in which we must

predictively guide our interactions with individual

objects, it is necessary to maximally distinguish between,

say, the cup and a stapler, hence the regional specializa-

tion of LOC for representing and detecting changes in

patterns on this scale. By contrast, we may remain in the

general office environment from several full minutes up

to several hours, and even as the constituent objects

repeatedly pass in and out of perception on their smaller

timescales, we must integrate over all those features to

extract a stable, longer-lasting context from the scene as a

whole. In this latter case we would want to maximally

distinguish this office scene context from others, such as a

supermarket, a street corner, or a beach [18�]. This idea of

a continuum of representational scales is shared by other

recent work on Temporal Receptive Windows (TRWs)

for representing narratives, whereby regions that inte-

grate over large TRWs have highly divergent representa-

tions when individuals interpret narratives that differ in

only a few words on a finer scale, but where those small
Current Opinion in Behavioral Sciences 2017, 17:194–202
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Figure 1

The brain represents change across a range of temporal scales. As our senses scan the environment, such as the office and the objects in the

figure above (left panel), they integrate conceptual wholes over time from low-level features with activation level and specificity decaying

logarithmically into the past (middle panel). Regions in the ventral temporal stream (VTS, right panel) are specialized for integrating over different

spatiotemporal scales in order to maximally differentiate entities of a particular scale. In the example, LOC differentiates objects like the mug and

the keyboard on a smaller timescale (shades of red), while PPA gradually integrates the same features into a larger-scale representation of the

whole office (shades of blue) in order to differentiate it from other environmental contexts. These loci may not exist as anatomically discrete

regions, but rather, as points on a continuum of scale-sensitivity seen in both the VTS and MTL (arrows in right panel). This scale continuum

enables the efficient detection and prediction of patterns across all scales.
changes give rise to a very different meaning at larger

scales [19].

Similarly, spatial relationships emerge from the stream of

experience through time, extracted as structural regulari-

ties in features over different time scales. Referring back

to the figure, the temporal stream of features representing

objects in an office also includes retinotopic and, at least

implicitly, spatiotopic information about the relative loca-

tions of those objects [20]. Thus, integrating over one

time scale allows for extracting the typical configurations

of objects in office scenes. Integrating over more time, we

can represent the spatial relationships between larger

regions of the environment.

Although the spectrum of scalar sensitivity in ventral

temporal stream may itself be continuous, specific enti-

ties in our world can plausibly be expected to manifest

more often within particular scale intervals [21], giving

rise to anatomical clusters that tend to code for specific

scales. Thus, the apparent representational discreteness

in regions like ventral temporal cortex may simply result

from our experience of scalar non-uniformities in our

external environment, which give rise to groups of fea-

tures that are structurally stable within the spatial and

temporal ranges to which those localized regions are

sensitive [22]. We alluded to this above, with the idea

that the time scales over which we interact with objects

can reliably just span seconds to minutes, whereas we are

most often in locations for minutes to hours. Other

components of our neural apparatus may link together

features of experience that, because they have similar

localization and extent, are likely to have arisen from the
Current Opinion in Behavioral Sciences 2017, 17:194–202 
same object or behaviorally-significant subdivision of the

environment. This, too, is all in service of prediction

because these shared features can be expected to co-

occur again in future experiences.

It is important to stress that just because a region may be

responding most strongly to features that would change

over longer timescales (e.g., the PPA), this does not mean

that it requires long integration times to represent that

information during the normal perceptual process [23].

Instead, once a stable set of possible configurations for a

scene has emerged over multiple experiences with scenes

of that type, the regions representing the longer time-

scales will receive inputs from earlier visual regions and

quickly activate representations that code for information

relevant to the particular temporal scale that region tracks

in order to provide maximal differentiation across experi-

ences [24�,25]. This initial representation can then be

refined with additional feature input as the individual

scans the environment.

This proposal suggests that regions specializing in differ-

entiating experience integrated over longer and longer

timescales will emerge through development as we gain

more experience with various contexts at these different

temporal scales. Some evidence in support of this claim

exists such that children aged 7–11 have a relatively

smaller PPA than adults, yet the LOC is no different

[26]. This further suggests that this same principle would

apply to earlier visual areas if researchers tracked neural

representations earlier in development (e.g., LOC might

exhibit relative differences between adults and younger

children, perhaps ages 3–4).
www.sciencedirect.com
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A continuum of logarithmically-spaced scales enables

efficient prediction

A proposal such as ours must not only describe a plausible

predictive mechanism, but also explain how that particu-

lar mechanism would be favored by evolutionary con-

straints. As described above, life is driven to become

maximally efficient given the computational costs and

physical constraints of the processes that adaptively cor-

relate it with the experiential environment. In other

words, we do not have unlimited energy, neurons, and

synapses to encode all of experience at full elaboration

without becoming highly inefficient. Consequently, we

must resolve this efficiency-utility trade-off by some

means of abstraction [9,27]. It seems that one way the

brain has addressed this problem is by extracting a scale-

invariant representation from continuous experience.

Also called Weber–Fechner law in perception, a scale-

invariant representation implies a logarithmic encoding of

the lag between feature change observations, with a

corresponding fall-off in precision proportional to the size

of the interval between those observations [28��].

Figure 1 illustrates the logarithmic scaling present as an

individual scans a scene. Note how the representations of

when the participant saw each object become less accu-

rate the farther it happened in the past. Even though the

figure focuses on tracking changes in when features acti-

vated, the same applies for where, as in the configural

relationship between objects is more precise the closer

they are.

Although the potential neural mechanisms that underlie

this scale-free representation are beyond the scope of the

present proposal [29], there exists a large and growing

literature providing evidence for its existence, regardless

of how it is implemented in the brain [16]. We instead

review the reasons why this scale-invariant representation

is an optimal solution for the efficiency-utility trade-off.

First, it allocates precision proportional to proximity and
certainty. The larger an interval, the more associative

and causal uncertainty there will be as the uncertainty

compounds with both temporal and spatial distance.

Thus, a scheme that filters out information most likely

to be uncertain/uninformative ‘noise’ in favor of more

certain/informative ‘signal’ would be one that assigns

precision in proportion to scale: a logarithmic representa-

tion. Second, this logarithmic representation can accom-
modate associations over arbitrarily large scales. Compared to

many previous models that describe a finite memory

buffer [30,31], scale-invariant models of memory and

representation avoid the risk of neglecting associations

with scales beyond the capacity of the buffer itself

[16,32]. Third, a logarithmic representation of experience

exploits inter-scale dependencies to increase the cost-efficiency of
building/learning the representations. Here the algorithm

harnesses stability from integrating over features of expe-

rience at larger scales to set expectations for features at
www.sciencedirect.com 
smaller scales, then the system can focus on only proces-

sing and learning maximally from deviations in this pre-

dicted stability. For example, as the ventral temporal

cortex processes a scene in the woods, the recognition

of the global scene properties as ‘woods-like’ by PPA

would bias LOC toward interpreting small, green objects

as leaves rather than, say, cans of Mountain Dew, and tall,

thin objects as tree-trunks instead of streetlamps. This

biasing sharply reduces the cost of processing the average

situation, allowing the system to focus maximally on

deviations from what was predicted.

From predictive coding in cortex to memory in the MTL

Our proposed scale-free spatiotemporal gradient of repre-

sentation in the cortex dovetails nicely with theories of

predictive coding and the free energy principle [33,34�].
In this paradigm, the brain constructs representations of

complex and spatiotemporally extensive entities from

simpler and more localized constituents, and in turn,

these higher-level representations help to predict what

will come next at the simpler, smaller level. The predic-

tions are sent down the hierarchy, where they are squared

against incoming information, generating error signals

moving back up the hierarchy [33]. Thus, each link on

the chain infers patterns of a given complexity/spatiotem-

poral scale, and each link also informs, and is informed by,

its neighbors’ inferences. In this way, both finer-scale and

coarser-scale context can be predicted from a stimulus at

one certain scale — effectively allowing for inter-scale

pattern-completion. However, this is still a temporally

(and therefore spatially) local associative architecture.

Each link in the chain is informed only by what its

neighbors are identifying right here and now. They cannot,

on their own, exploit associative information that is spa-

tiotemporally removed from the present. They can rap-

idly and efficiently derive a rich picture spanning many

scales from a sparse sample, while minimizing the energy

it takes to represent that information, but that picture still

only represents what is currently happening, along with

the logarithmic gradient of recent experience leading up

to this point. This graded representation has limited

ability to extrapolate in detail across many experiences.

There is growing evidence that without a hippocampus

(or as the MTL degrades with increasing dementia), a

person’s ability to simulate the future becomes more and

more generic and general [35]. This, along with a wealth

of other data [36], points to the critical role of the MTL in

both forming long-range associations and generating pre-

dictions of the future because the MTL is necessary for

our ability to relive and draw on earlier experiences to

generate predictions, and even to generate complex pre-

dictive value-maps to guide future actions [37]. In other

words, the MTL allows us to mentally time travel [38]

and, hence, flexibly navigate our past to make detailed

predictions of the future across spatiotemporal scales,

whereas the cortex can integrate across scales based on
Current Opinion in Behavioral Sciences 2017, 17:194–202
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the present, but only by generalizing so much that speci-

ficity is lost.

In order to accomplish this feat, we argue that the same

scale free representations that emerge during continuous

experience in the cortex are mirrored along the longitu-

dinal axis of the MTL [15,39�], though with the added

architecture for quickly forming associations between sets

of features reinstated from past experience [40]. For exam-

ple, after experiencing A ! B at one point and then

B ! C at another, the hippocampus makes the transitive

inference between A ! C possible because experi-

encing B the second time will reinstate A and bind it

to C [41]. Consequently, the MTL is able to form

associations between events that share features, but oc-

cur at completely different times. In functional imaging

studies, the hippocampus, and particularly subfield CA1,

has in fact been identified as central to such transitive-

inferential associations [42]. These enhanced transitive

associations mean the organism can not only access the

logarithmically-compressed history of very recent and

local experience, but that it can harness the MTL to

reinstantiate experience from any significant point in the

whole of time and space through which it has passed

previously and bind it to the present experience. The

organism thus maintains a representation of the world that

becomes efficiently abstracted with increasing distance

from here and now, yet nonetheless supports high repre-

sentational density for the subset of remote events that

are highly relevant despite their spatiotemporal distance.

Through this process the organism is able to create a

rich cognitive map of the world through the lens of

experience [43].

We, therefore, interpolate between actually-experienced

representations to create a complex model of the world

that serves as an extended and flexible map. This map

allows not only for highly-selective reaction to the current

situation, which non-MTL cortical hierarchies can pro-

duce already, but also proactive pathfinding of multiple

future courses of navigation and action based on previous

experiences in related contexts [[44�,45]. Long-range

associations can be enhanced further through replay of

sequences of feature-states from the past or even imagin-
ing entirely new sequences constructed from those states.

All of the reinstantiated states of the chain then become

available once again for binding not only to the current,

exogenous sensory input, but to each other. Therefore,

long after their originating events have passed, large

numbers of new predictive associations can be built

between feature-state representations stored in memory.

This highly developed, associative web implemented in

the brain by the MTL and, in particular, the hippocampus

is what that we most colloquially refer to with the word

‘memory’; it serves a prospective function of correlating

an organism’s adaptive responses with the spatiotempo-

rally extended regularities in the environment, thereby
Current Opinion in Behavioral Sciences 2017, 17:194–202 
creating the cognitive map over all experience and allow-

ing us to be highly efficient prediction machines.

Time and space in memory
Neural time and space enable long-range associations

In expounding the virtues of harnessing the MTL to form

long-range associations, we have neglected an important

detail: how the brain decides what long-range associations

to form. The short-range associative capability of unaided

perceptual cortex has an inherent advantage in filtering

for highly relevant associations between stimuli, since

sensory inputs that are immediate neighbors in time are

naturally related to one another. Pushing that associative

frontier outwards in time would impair this quality-

control, swamping the organism with a flood of long-

distance associations, a much smaller proportion of which

will improve the predictive signal enough to justify the

added noise. To be adaptive, then, any long-range asso-

ciative mechanism would have to filter candidate binding

targets by some measure of relevance to the current

context.

As argued above, the purpose of the spatiotemporal

continuum in the brain is to detect and predict feature

change at different scales. Detecting neural feature

changes also provides the measure with which to calculate

neural distance. For example, the more two experiences

diverge in feature-change distance, the greater their

separation in distance-based neural time and space

[46,47]. Once such a neural distance measure is estab-

lished, the probability that any particular past experience

will be reactivated by, and then bound to, the current

context can be made inversely proportional to its neural

distance to the current context. The result is that experi-

ences that are more predictively relevant are more likely to

be associatively bound.

It is further possible to focus attention on a particular

spatiotemporal scale more relevant for a particular task,

which would change the anatomical locus of the distance

metric along the longitudinal axis of the MTL. Evidence

from gene-expression, anatomical, electrophysiological

and fMRI data support the notion that there are func-

tional long-axis scale gradients in the hippocampus, with

anterior regions representing more global scales (e.g.,

larger place fields) and posterior regions representing

finer scales (e.g., smaller place fields) [15,39�,48�,49].
Temporal and spatial memory are differentially impaired

by damage to different positions on the long axis of the

hippocampus, which suggests that this structural differ-

ence is also one of the typical scale of relevant feature

change [50�]. Further support for these long-axis gradi-

ents of scale comes from recent fMRI work demonstrating

that neural distances between remembered real-life

experiences spanning days to weeks and 100 meters to

kilometers tracked these long-range time and space dis-

tances in the anterior hippocampus [51��]. Recent work
www.sciencedirect.com
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also provides evidence that temporal and spatial repre-

sentations are functionally intertwined in regions of the

hippocampus, and that between-stimulus intervals in

both dimensions are represented in a logarithmic fashion,

suggesting Weber-Fechner scales, as predicted by the

spatiotemporal continuum of feature change described

above [17,51��,52��].

Thus, space and time, which manifest in the spatiotem-

poral scales tracking feature change along the longitudi-

nal axis of the MTL, may actually provide the critical

distance metric that makes relevant long-range associa-

tions possible. These same spatiotemporal distance

metrics may also provide a means for targeting and

reinstating past experiences when more-specific con-

tent-based cues are lacking, by reconstructing their posi-

tions within the real-world dimension in which those

experiences happened [53]. As stated above, long-range

associations also allow for the construction of rich cogni-

tive maps of experience, allowing for flexible prediction

across spatiotemporal scales. In the following section we

explore how even though space and time arise from the

same distance metrics based on feature change, their

informational content differs, which leads to distinct

scenarios where they can be employed as useful memory

cues.

Despite a common basis, neural time and space are

informationally distinct

We have argued that neural time and space are both

emergent properties of feature change along a continuum

of scales, yet there is reason to believe they differ in

information content, giving rise to priority differences in

the memory system. To understand why this may be the

case, we should first consider the characteristics of the

real-world dimensions whose regularities these neural

representations must emulate in order to serve their

adaptive function. The most obvious concerns the num-

ber of subordinate dimensions; external time has one,

while external space has three, affording a geometrically

larger set of associative possibilities between events.

Experiences in space can be interrelated in complex

topological networks, while experiences in time can only

occupy earlier or later positions on a line. Equally impor-

tant, the flow of time is also unidirectional, whereas it is

possible to revisit spatial locations.

These qualitative differences have major consequences

for us as we interact with the world. Although we can

return to the same point in real space during many

different experiences, each time arriving and departing

along a different trajectory in both real and perceptual

space, we have no corresponding ability to revisit a point

in real time. Lacking in these repetitions, time appears

inherently less stable than space from the perspective of a

living system. However, the representational architecture

of neural space appears to leverage the additional
www.sciencedirect.com 
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structs that have no apparent counterparts in the compu-

tation of neural time. These include optic flow [16], ocular

motion [54], direction [55,56], vestibular cues [57�], as

well as a number of more integrative mechanisms includ-

ing boundary cells [58], speed cells [59], place cells [60],

and grid-like neuronal firing fields that map to evenly

distributed spatial geometries and also follow the same

coarse to fine representational continuum along the lon-

gitudinal axis of the MTL [61,62,63�]. Each of these

captures some contingency between change in one sub-

ordinate dimension and change in another, and functions

to modulate and reinforce the underlying distance-based

representation depending on those constraints. By incor-

porating this additional between-dimension contingency

information over and above the more basic contextual-

distance measures, the neural representations of space

thus provide stronger and more reliable retrieval cues

than those of time.

It is informative to consider the case of a sharp boundary,

such as the transition a person experiences moving

indoors to outdoors. Such transitions are marked by large

changes in feature-space, which give rise to large changes

in the spatiotemporal context used to guide predictions.

These large feature changes also likely provide the

anchor points to help identify event boundaries at partic-

ular scales [4]. This scale specificity for tracking event

boundaries is underlined by the fact that just because you

transitioned from inside to outside your office building it

does not mean you have left the context of your univer-

sity, which can still provide useful predictions, such as

seeing students and colleagues, at larger and longer

spatiotemporal scales. Finally, just because modern life

may tend to have more sharp transitions than the past (i.e.,

with fewer buildings, elevators, or motorized vehicles,

especially air travel), this does not mean that the general

neural architecture we propose here has actually changed

over such a short evolutionary timescale. Instead, it may

be that these sharp changes in spatiotemporal features are

one way in which modern life induces stress in neural

processing.

Conclusions
Here we have recast the neural machinery of perception,

memory, and prediction, away from the classic narrative

of a set of discrete brain regions whose main role is to

represent higher-order categories, toward a continuum of

scales whose aggregate function is to predict future

changes in streams of elemental sensory features based

on the history of those streams. The foundation of this

system is a perceptual continuum in cortex, where each

point on the continuum integrates over, and maximally

responds to, a particular spatiotemporal scale of feature-

change. Each integrator cross-talks with its higher-scale

and lower-scale neighbors to leverage predictive cod-

ing for greater classification accuracy and efficiency.
Current Opinion in Behavioral Sciences 2017, 17:194–202
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Together, the full continuum provides a comprehensive

representation of the trans-scale immediate context and a

prediction of its very immediate future.

Nonetheless, without the contribution of the medial

temporal lobe, particularly the hippocampus, this predic-

tion is limited to a tiny slice of the present stream of

experience, decaying logarithmically in both forward and

backward directions. Neural time and space provide a

distance metric derived from feature change across these

spatiotemporal scales that the MTL can harness to iden-

tify relevant similarity of past experiences to the present.

This enables reinstatement of remote contexts, which can

be bound to the present experience to support long-range

associations or to enrich the richness of predictions from

the present. The long-range associations ultimately lead

to the construction of cognitive maps across the entire

spectrum of feature change, integrating over all life’s

experiences.

In this sense, semantic knowledge would constitute

experiences embedded in a map that has been so thor-

oughly elaborated that they ‘transcend’ neural time and

space entirely to become universally-applicable concepts

and facts, since there is no longer anything to anchor them

to any specific temporal or spatial contingency. This

would render the classically sharp division between epi-

sodic and semantic memory a difference of extremity, not

of kind. Instead, episodic and semantic memory both

emerge due to the same extraction of regularities in the

continuum of spatiotemporal feature change across

experiences [64].

Implications for future research

This synthesis has a number of experimental ramifica-

tions. First, we should watch for opportunities to resolve

apparent contradictions in functional results that stem

from expectations that perceptual brain regions primarily

respond to specific, discrete categories. The example of

[65] is instructive. If the PPA represents only place

identity, then the finding that it also responds to material

category requires radical reevaluation of the first hypoth-

esis; but if PPA instead recognizes feature-change at a

scale common to both place and material, there is no

contradiction.

Second, by focusing inquiry on the function of isolated

loci in perceptual cortex and medial temporal lobe, we

may be missing more important trends happening across

continuua. In order to mitigate this, future work in this

area should record and analyze data from across a much

wider range of scales in both space and time [51��]. This

is facilitated by the proliferation of life-logging tech-

nology which permits persistent collection of multi-

modal data (digital imaging, accelerometry, GPS, among

others) across the naturalistic settings of the subjects’ own

lives [66].
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Third, in the realm of computational modeling, particular

attention should be given to models with logarithmic

representations of spatiotemporal scale and distance fol-

lowing the Weber-Fechner law [67,68�].

Fourth, if the apparent discreteness of perceptual loci is

not endogenous, but results from actual scalar non-uni-

formities in the structure of the external sensory envi-

ronment, this raises the interesting question of whether

organisms learning in environments with artificially-dis-

torted scalar distributions would come to recognize alter-

nate dimensions of feature change that do not readily

correspond with the familiar labels we currently utilize to

describe our world, similar to the way brain regions for

vision are co-opted for other forms of representation in

congenitally blind individuals [69].

Fifth, if higher-order perceptual integrators depend on

smaller-scale integrators acting in concert with the hip-

pocampus for learning at their own scale, this suggests

that earlier visual areas should follow the same sequential

pattern of development as LOC and PPA. Comparing

relative differences in neural representations in these

areas between adults and younger children would help

to determine if this is the case.

Finally, to our knowledge, no study to date has been

performed with the explicit goal of comparing the repre-

sentational boundaries of time and space. An experimen-

tal paradigm that intentionally manipulates temporal

contexts in order to enhance their space-like character-

istics (such as the recurrence of temporal ‘landmarks’) and

then compares the resulting patterns of neural activations

with those based on true spatial contexts would help to

answer this.
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17. Buzsáki G: Our skewed sense of space. Science 2015, 347:612.

18.
�

Livne T, Bar M: Cortical integration of contextual information
across objects. J Cogn Neurosci 2016, 28:948-958.

Discussion of the integrative dynamics that infer higher-order wholes from
contextual feature-streams. Discusses spatial coherence as a ‘second-
order contextual property’ in comparison to the more basic properties of
contextual co-occurrence between features in these streams.

19. Yeshurun Y, Nguyen M, Hasson U: The butterfly effect:
amplification of local changes along the temporal processing
hierarchy. bioRxiv 2017 Jan.

20. Golomb JD, Kanwisher N: Higher level visual cortex represents
retinotopic, not spatiotopic, object location. Cereb Cortex
2012, 22:2794-2810.

21. Sreekumar V, Dennis S, Doxas I, Zhuang Y, Belkin M: The
geometry and dynamics of lifelogs: discovering the
organizational principles of human experience. Edited by
Balasubramaniam R. 2014, 9:e97166.

22. Ferber S, Humphrey GK, Vilis T: The lateral occipital complex
subserves the perceptual persistence of motion-defined
groupings. Cereb Cortex 2003, 13:716-721.

23. O’Connell TP, Walther DB: Dissociation of salience-driven and
content-driven spatial attention to scene category with
predictive decoding of gaze patterns. J Vision 2015, 15 20-0.

24.
�
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