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Abstract
This short paper is a supplement to the article “Products of Variables in
Structural Equation Models”.

The Products of Variables article derives the variance of a product of two variables1

using the methods of moments. However, it neglects to derive the full expected covariance2

matrix of the model Z = b1XY +e. This supplement to the article derives the full expected3

covariance matrix of Z = bXY + e using the method of moments for products of variables.4

We first derive the expected covariance assuming all variables are centered in order to5

show why this model is underdetermined and thus has an infinite number of equally likely6

maximum likelihood solutions. We next derive the expected means and covariances of the7

model for the case where the multiplicands have nonzero means and show that this model8

does have a single maximum likelihood solution. Some of this supplement is redundant with9

material found in the main article, but this material is included here so that the supplement10

can be read as a stand alone short paper.11

Expectations by Method of Moments for Products of Centered Variables12

Suppose we are given an SEM as a path diagram in which all nodes with incoming13

edges are additionally labeled as sum or product of their incoming edges. For the time14

being, we will assume that the graph is acyclic (recursive). It may be that the results can15

be extended to cases with cycles as well, provided that for all node values, a infinite series16

calculated along each cycle converges.17

We are interested in all moments of the vector of all observed variables. The following18

describes how those can be computed analytically assuming a fixed set of parameters. Wall19

and Amemiya Wall and Amemiya (2001, 2003) proposed to represent variance sources of an20
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SEM as independent standard-normally distributed sources. We have extended and gener-1

alized this idea by transforming SEM models represented in Reticular Action Model (RAM,2

McArdle & McDonald, 1984) format into an equivalent models that have only monomial,3

independent standard-normally distributed variables. Then, all moments become expecta-4

tions of polynomials, which in turn are sums of monomials. In this way, the computation5

of the moments is reduced to computing the expectation of a monomial of independently6

standard-normally distributed variables–a problem that has a known computational solu-7

tion.8

At the highest level, the algorithm proceeds in three steps,9

1. All variables in the SEM are represented by a linear combination of some indepen-10

dently normally distributed variables w1, ..., wn with known variances such that the11

covariance matrix of all variables is the symmetrical matrix S from the RAM matrix12

formulation.13

2. Progressing top-down in the asymmetrical graph of the path diagram, polynomial14

representations of all variables in the w1, ..., wn are computed.15

3. Polynomial representations of all requested moments are computed and evaluated into16

numbers.17

Suppose that we have an SEM represented in standard RAM notation such that the,
the model-expected covariance matrix of the observed variables, CXX is calculated as

CXX = F(I − A)−1S((I − A)−1)T FT (1)

where for all variables, both latent and manifest, A is the matrix of regression coefficients,18

S is the matrix of variances and covariances, and I is the identity matrix. The matrix F19

filters out the latent variables so that CXX contains only the model-expected covariance20

matrix of the observed variables.21

In order to transform the model into a model with only independent variables, we
will operate on S, the matrix of model variances and covariances both latent and manifest.
We first compute the Eigenvalue decomposition of S,

S = QDQT (2)

Let W = w1, ..., wn be independently normally distributed variables with zero mean and
variances given by the diagonal entries of D, the Eigenvalues of S, where n is the number
of total variables in the SEM. Then QW is an n-dimensional random variable with zero
mean and covariance

V(QW ) = E(Q
√

D
√

DQT ) = S (3)
So each variable can be expressed by a linear combination of the W variables with the22

corresponding row of Q as weights, plus a constant term that gives the mean of that variable.23

Using the product and sum nodes, every variable in the model (both observed and
latent) Xi can now be represented as a polynomial fi in w1, ..., wn. If there are m variables in
total, the k = (k1, ..., km)-th moment of the joint distribution of the vector X = (x1, ..., xm)
is

Mk(X) = E(
m∏

i=1
fki

i ) (4)
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where the expectation is taken with respect to the roots wi. In particular, Mk(X) is
the expected value of a polynomial in wi, where the coefficients are combination of the
regression weights in the SEM. Let this polynomial be g =

∏m
i=1 fki

i . This polynomial is a
sum of monomials in wi. Since the expectation is linear, we can separate the computation
of the expectation to the single monomials, and thus reduce our problem to computing
the expectation of a monomial of independently normally distributed variables, i.e., an
expectation of the form

E (we1
1 · · · wen

n ) (5)

which is given by the product of the expectations of the single variables with their exponents,

E (we1
1 · · · wen

n ) =
n∏

i=1
E(wei

i ) (6)

This last equation is not completely trivial, and so for completeness sake, we give a1

quick proof:2

Theorem 1.

E (W e1
1 · · · W en

n ) =
n∏

i=1
E(W ei

i ) (7)

Proof.

E (W e1
1 · · · W en

n ) =
∫ ∞

−∞
we1

1 · · · wen
n pdf(w1) · · · pdf(wn)dw1 . . . dwn

=
∫ ∞

−∞

(∫ ∞

−∞
we1

1 pdf(w1)dw

)
we2

2 · · · wen
n pdf(w2) · · · pdf(wn)dw2 . . . dwn

= E(W e1
1 )

∫ ∞

−∞
we2

2 · · · wen
n pdf(w2) · · · pdf(wn)dw2 . . . dwn

...

=
n∏

i=1
E(W ei

i )

3

Thus, we are left with computing the higher-order moments of independent standard-
normally distributed variables with zero mean and unit variance,

E(W e) , (8)

where e is an integer. These moments are known (e.g., Papoulis & Pillai, 2002) to be

E(W e) =
{

0 if e is odd
V(W )e/2 ∏ e−2

2
i=1 (2i + 1) if e is even

}
(9)
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Variance of Z1

We first transform the SEM model for Z = bXY + e such that all sources of variance2

and covariances are independent, normally distributed variables with mean zero and unit3

variance. The first step is to remove all covariances between variables by replacing them4

with unit variance sources. Thus, we add the latent variable w2 and replace the covariance5

path with the value C(XY ) in Figure 1-a with regression paths from w2 to X and Y . Thus,6

the covariance between X and Y can be calculated as ((C(XY ))
1
2 ·1·(C(XY ))

1
2 )) = C(XY ).7

However, now the variances for X and Y become residual variances that must be reduced8

by the total effect of w2 which is (C(XY )
1
2 ) · 1 · (C(XY )

1
2 ) = C(XY ). So, the residual9

variance of X is VX − C(XY ) and the residual variance of Y is VY − C(XY ).10

x y

z

1 1

Vx Vy

e

1

Ve

b1

Cxy

x y

z

1 1

b1

w1 w2 w3

w4

1

1 1 1

Ve1/2

(Cxy)1/2
(Vx - Cxy)1/2 (Vy - Cxy)1/2

 (Cxy)1/2

a b

Figure 1 . Path diagrams of a product of two variables. The asterisk surrounded by a circle
represents the product of the variables connected to it by incoming arrows. (a) Mean-centered
variables with a single product term. (b) Equivalent path diagram with variances sources isolated
to be independent normally distributed variables with mean zero and variance one.

We can now replace the variance terms in Figure 1-a with the independent normally11

distributed unit variance variables w1, w3, and w4 and regression paths to X, Y , and12

e respectively. The regression weights for these variables become the square root of the13

residual variances for X, Y , and e as shown in Figure 1-b. The ith variable in the path14

diagram in Figure 1-b can now be represented as a polynomial fi of what we will refer to as15

root nodes, i.e., the independent, normally distributed variables w1, . . . , wn with zero mean16

and unit variance. This transformation of an SEM model into polynomials of root nodes17

can be applied to any SEM that can be represented as a RAM model, including models18

that have n-ary operators such as introduced here.19
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In the following, we will derive the expected covariance matrix of the diagram above.1

We first transform the model into the equivalent monomial form model shown in Figure 1-b.2

To shorten our derivation, we refer to Equations 10, 11, 12, and 13 to define four variables3

A, B, C, and D.4

A = w1(V(X) − C(XY ))
1
2 (10)

B = w2(C(XY ))
1
2 (11)

C = w3(V(Y ) − C(XY ))
1
2 (12)

D = w4(V(e))
1
2 . (13)

The expected value of a monomial with an odd power is zero and so E(A) = E(B) = E(C) =5

E(D) = E(A3) = E(B3) = E(C3) = E(D3) = 0. The squares of these four monomials are6

non-zero and so it is also convenient to define their expected values as7

VA = E(A2) = V(X) − C(XY ) (14)
VB = E(B2) = C(XY ) (15)
VC = E(C2) = V(Y ) − C(XY ) (16)
VD = E(D2) = V(e). (17)

Finally, we will need the expected value of the fourth power of B,8

FB = E(B4) = 3C(XY )2 (18)

Now we can refer to the three variables in the model using an abbreviated version of9

their monomial forms such that10

X = A + B

Y = B + C

Z = b1XY + D = b1(A + B)(B + C) + D. (19)

All expectations of monomials with at least one variable to the power of an odd number11

will result in zero and so we will ignore them.12

The second moments can be formed as follows. Since the variances and covariances13

can be computed by the second moment minus the product of the expectations and the14

expected value of a variable with mean zero is zero, thus the variances and covariances of15

centered variables reduce to the second moments. We begin with the moments not including16
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Z:1

E(X2) = E(A2 + B2)
= VA + VB

= V(X) − C(XY ) + C(XY )
= V(X) (20)

E(Y 2) = E(B2 + C2)
= VB + VC

= C(XY ) + V(Y ) − C(XY )
= V(Y ) (21)

E(XY ) = E(B2)
= VB

= C(XY ) (22)

The second moments of variables including Z are2

E(XZ) = E((A + B)(b1(A + B)(B + C) + D))
= E((A + B)(b1(AB + B2 + BC) + D))
= E(b1(A2B + AB2 + ABC) + AD) + (b1(B2A + B3 + B2C) + BD))

Since the expectation of a constant is that constant we have3

E(XZ) = b1E(A2B + AB2 + ABC + AD + B2A + B3 + B2C + BD)

And now, substituting in the expected values from above we have4

E(XZ) = b1E(VA(0) + (0)VB + (0)(0)(0) + (0)(0) + VB(0) + (0) + VB(0) + (0)(0))
E(XZ) = C(XZ) = 0 (23)

By the same logic,5

E(Y Z) = C(Y Z) = 0 (24)

Deriving the second moments of Z is somewhat more complicated.6

E(Z2) = E((b1(A + B)(B + C) + D)2)
= E((b1(AB + BB + AC + BC) + D)2)
= E((b1AB + b1BB + b1AC + b1BC + D)2)
= E((b2

1A2B2 + b2
1B3A + b2

1A2CB + b2
1B2CA + b1DAB + b2

1B3 + b2
1B4 +

bb2
1B2AC + b2

1BB3C + b1B2D + b2
1A2CB + b2

1ACBB2 + b2
1A2C2 + b2

1AC2B +
bb1ACD + b2

1B2CA + b2
1B3C + b2

1BC2A + b2
1B2C2 + b1BCD +

bDb1AB + Db1B2 + Db1AC + Db1BC + D2)) (25)
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And now, substituting in the expected values from above we have1

E(Z2) = b2
1VAVB + b2

1(0)(0) + b2
1VA(0)(0) + b2

1VB(0)(0) + b1(0)(0)(0) + b2
1(0) +

b2
1FB + b2

1VB(0)(0) + b2
1(0)(0) + b1VB(0) + b2

1VA(0)(0) + b2
1(0)(0)VB + b2

1VAVC +
b2

1(0)VC(0) + b1(0)(0)(0) + b2
1VB(0)(0) + b2

1(0)(0) + b2
1(0)VC(0) + b2

1VBVC +
b1(0)(0)(0) + b1(0)(0)(0) + (0)b1VB + (0)b1(0)(0) + (0)b1(0)(0) + D2 (26)

Removing the zeros and collecting terms we find2

E(Z2) = b2
1(VAVB + FB + VAVC + VBVC) + D2 (27)

Now we substitute in the values from Equations 34, 35, 36, and 37 to find3

E(Z2) = b2
1((V(X) − C(XY ))(C(XY )) + 3C(XY )2 +
(V(X) − C(XY ))(V(Y ) − C(XY )) + (C(XY ))(V(Y ) − C(XY ))) + V(e)

= b2
1(V(X)C(XY ) − C(XY )2 + 3C(XY )2 + V(X)V(Y ) − C(XY )V(Y ) −
V(X)C(XY ) + C(XY )2 + C(XY )V(Y ) − C(XY )2) + V(e)

= b2
1(V(X)V(Y ) + C(XY )2) + V(e) (28)

which is the result given by Goodman (1960) and Bohrnstedt and Marwell (1978), who4

calculated the variance of a product of two zero mean normally distributed variables as5

V(Z) = V(X)V(Y ) + C(XY )2.6

In the derivation of the variance of the outcome variable Z shown in Equation 27,7

note that almost all of the terms in the expansion end up being zero. In fact, the lower8

moments of variables that originate from products of normals are often zero, because the9

kth moment of a standard-normally distributed variable is zero if k is odd.10

Expected covariance matrix of Z = b1XY + e11

We now have all of the elements in E(Σ), the expected covariance matrix of the model12

Z = b1XY + e13

E(Σ) =

 VX C(XY ) 0
C(XY ) VY 0

0 0 b2
1(VXVY + C(XY )2) + Ve

 (29)

In linear regression, the regression coefficients appear both in the variance of the14

outcome variable as well as in the covariances between the predictors and outcomes. This15

determines the regression coefficients. However, in this product of variables model, the re-16

gression coefficient only appears in one cell of the expected covariance matrix: the expected17

variance of the product. Given that the variance of the residual is also only determined by18

its summation in the variance of the product, the model is underdetermined: the value of19

the variance of e and the value of b1 can trade off with one another. In addition, since b120

only appears as b2
1 in the expected covariance, the sign of b1 is also underdetermined.21



EXPECTED COVARIANCE MATRIX OF Z = BXY + E 8

Expectations for Products of Variables with Nonzero Means1

When the means of the predictor variables are included in the model, these means2

show up in several places in the expected covariance matrix as well as the expected means3

vector. These means provide sufficient constraints to determine the solution. Consider the4

product of variables model with means shown in Figure 2-a.5

x y

z

1 1

Vx Vy

e

1

Ve

b1

1

μx μy

Cxy

x y

z

1 1

w4

b1

1

Ve1/2

1

w1

1

w2 w3

1 1

(Cxy)1/2

(Vy-Cxy)1/2

(Cxy)1/2

(Vx-Cxy)1/2

μy μx 

a b

Figure 2 . Path diagrams of a product of two variables with estimated means for the multipli-
cands. The asterisk surrounded by a circle represents the product of the variables connected
to it by incoming arrows. (a) X and Y with estimated means and a single product term. (b)
Equivalent path diagram with variance sources isolated to be independent normally distributed
variables with mean zero and variance one.

In the following, we will derive the expected covariance matrix and means vector of6

the diagram above. We first transform the model into the equivalent monomial form model7

shown in Figure 2-b. Once again, to shorten our derivation, we refer to Equations 30,31,32,8

and 33 to define four variables A, B, C, and D.9

A = w1(V(X) − C(XY ))
1
2 (30)

B = w2(C(XY ))
1
2 (31)

C = w3(V(Y ) − C(XY ))
1
2 (32)

D = w4(V(e))
1
2 . (33)
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We also will need to define the expected values of the squares of these four monomials,1

VA = E(A2) = V(X) − C(XY ) (34)
VB = E(B2) = C(XY ) (35)
VC = E(C2) = V(Y ) − C(XY ) (36)
VD = E(D2) = V(e). (37)

Finally, we will need the expected value of the fourth power of B,2

FB = E(B4) = 3C(XY )2 (38)
(39)

Now we can refer to the three variables in the model using an abbreviated version of3

their monomial forms such that4

X = A + B + µX

Y = B + C + µY

Z = b1XY + D = b1(A + B + µX)(B + C + µY ) + D. (40)

All expectations of monomials with at least one variable to the power of an odd number5

will result in zero and so we will ignore them. This leaves us with following expectations6

for the means,7

E(X) = µX (41)
E(Y ) = µY (42)
E(Z) = b1E(B2) + b1µXµY = b1(VB + µXµY ). (43)

The second moments can be formed analogously. We begin with the moments not8

including Z:9

E(X2) = E(A2 + B2 + µ2
X)

= VA + VB + µ2
X

= VX − C(XY ) + C(XY ) + µ2
X

= VX + µ2
X (44)

E(Y 2) = E(B2 + C2 + µ2
Y )

= VB + VC + µ2
Y

= C(XY ) + VY − C(XY ) + µ2
Y

= VY + µ2
Y (45)

E(XY ) = E(B2 + µXµY )
= VB + µXµY

= C(XY ) + µXµY (46)
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The second moments of variables including Z are1

E(XZ) = E((A + B + µX)(b1(A + B + µX)(B + C + µY ) + D))
= b1E(A2µY + B2µY + 2B2µX + µ2

XµY )
= b1(VAµY + VB(µY + 2µX) + µ2

XµY ) (47)
E(Y Z) = b1(VCµX + VB(µX + 2µY ) + µ2

Y µX) (48)

Again, deriving the second moments of Z is more complicated.2

E(Z2) = E((b1(A + B + µX)(B + C + µY ) + D)2)
= b2

1E((A2 + B2 + µ2
X + 2AB + 2AµY + 2BµY )

·(B2 + C2 + µ2
Y + 2BC + 2BµX + 2CµX)) + D2

= b2
1E(A2B2 + A2C2 + A2µ2

Y + 2A2BC + 2A2BµX + 2A2CµX +
B4 + B2C2 + B2µ2

Y + 2B3C + 2B3µX + 2B2CµX +
B2µ2

X + C2µ2
X + µ2

Xµ2
Y + 2BCµ2

X + 2BµXµ2
X + 2CµXµ2

Y +
2AB3 + 2ABC2 + 2ABµ2

Y + 4AB2C + 4AB2µX + 4ABCµX +
2AB2µY + 2AC2µY + 2Aµ3

Y + 4ABCµY + 4ABµXµY + 4ACµXµY +
2B3µY + 2BC2µY + 2Bµ3

Y + 4B2CµY + 4B2µXµY + 4BCµXµY )) + D2

(49)

Since anything multiplied by odd powers of A, B, C, or D will be zero, the previous expres-3

sion can be simplified to4

E(Z2) = b2
1E(A2B2 + A2C2 + A2µ2

Y + B4 + B2C2 + B2µ2
Y +

B2µ2
X + C2µ2

X + µ2
Xµ2

Y + 4B2µXµY )) + D2 (50)

Substituting the squared and fourth power monomials we have5

E(Z2) = b2
1(VAVB + VAVC + VBVC + FB + VAµ2

Y + VCµ2
X

+VB(µ2
X + µ2

Y + 4µXµY ) + µ2
Xµ2

Y ) + VD (51)

Substituting the expected values of the second and fourth moments we find6

E(Z2) = b2
1((V(X) − C(XY ))C(XY ) +
(V(X) − C(XY ))(V(Y ) − C(XY )) +
C(XY )(V(Y ) − C(XY )) + 3C(XY )2 +
(V(X) − C(XY ))µ2

Y + (V(Y ) − C(XY ))µ2
X

+C(XY )(µ2
X + µ2

Y + 4µXµY ) + µ2
Xµ2

Y ) + V(e) (52)
= b2

1(V(X)C(XY ) − C(XY )2 +
V(X)V(Y ) − C(XY )V(Y ) − V(X)C(XY ) + C(XY )2 +
C(XY )V(Y ) − C(XY )2 + 3C(XY )2 +
V(X)µ2

Y − C(XY )µ2
Y + V(Y )µ2

X − C(XY )µ2
X +

C(XY )µ2
X + C(XY )µ2

Y + 2C(XY )µXµY + µ2
Xµ2

Y ) + V(e) (53)
= b2

1(V(X)µ2
Y + V(Y )µ2

X + 2C(XY )µXµY + µ2
Xµ2

Y +
V(X)V(Y ) + 2C(XY )2) + V(e) (54)
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The variances and covariances can be computed by the second moment minus the product1

of the expectations. Again, consider the variances and covariances not including Z first:2

V(X) = E(X2) − E(X)2

= VA + VB + µ2
X − µ2

X

= VA + VB

= V(X) − C(XY ) + C(XY )
= V(X) (55)

V(Y ) = E(Y 2) − E(Y )2

= VB + VC + µ2
Y − µ2

Y

= V(Y ) − C(XY ) + C(XY )
= V(Y ) (56)

C(XY ) = E(XY ) − E(X)E(Y )
= VB + µXµY − µXµY

= VB

= C(XY ) (57)

The covariances that include Z are3

C(XZ) = E(XZ) − E(X)E(Z) (58)
= b1(VAµY + VB(µY + 2µX) + µ2

XµY ) − µXb1(VB + µXµY )
= b1(VAµY + VB(µY + 2µX) + µ2

XµY − µXVB − µ2
XµY )

= b1(VAµY + VB(µX + µY ))
= b1(V(X)µY − C(XY )µY + C(XY )µX + C(XY )µY )
= b1(V(X)µY + C(XY )µX) (59)

C(Y Z) = E(Y Z) − E(Y )E(Z)
= b1(VCµX + VB(µX + 2µY ) + µ2

Y µX) − µY b1(VB + µY µX)
= b1(VCµX + VB(µX + 2µY ) + µ2

Y µX − µY VB − µ2
Y µX)

= b1(VCµX + VB(µX + µY ))
= b1(V(Y )µX − C(XY )µX + C(XY )µX + C(XY )µY )
= b1(V(Y )µX + C(XY )µY ) (60)
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Finally, the variance of Z is1

V(Z) = E(Z2) − E(Z)2 (61)
= b2

1(VAVB + VAVC + VBVC + FB + VAµ2
Y + VCµ2

X

+VB(µ2
X + µ2

Y + 4µXµY ) + µ2
Xµ2

Y ) + VD

−b2
1(V 2

B + 2VBµXµY + µ2
Xµ2

Y ) (62)
= b2

1(VAVB + VAVC + VBVC + FB + VAµ2
Y +

VCµ2
X − V 2

B − 2VBµXµY − µ2
Xµ2

Y ) + VD (63)
= b2

1((V(X) − C(XY ))C(XY ) + (V(X) − C(XY ))(V(Y ) − C(XY )) +
C(XY )(V(Y ) − C(XY )) + 3C(XY )2 + (V(X) − C(XY ))µ2

Y +
(V(Y ) − C(XY ))µ2

X − C(XY )2 −
C(XY )(µXµY ) − µ2

Xµ2
Y ) + V(e) (64)

= b2
1(V(X)C(XY ) − C(XY )2 +
V(X)V(Y ) − C(XY )V(Y ) − V(X)C(XY ) + C(XY )2 +
C(XY )V(Y ) − C(XY )2 + 3C(XY )2 +
V(X)µ2

Y − C(XY )µ2
Y + V(Y )µ2

X − C(XY )µ2
X −

C(XY )2 − C(XY )µXµY − µ2
Xµ2

Y ) + V(e) (65)
= b2

1(V(X)µ2
Y + V(Y )µ2

X + V(X)V(Y ) + C(XY )2 −
C(XY )(µY + µX)2 − µ2

Xµ2
Y ) + V(e) (66)

Expected covariance matrix and mean vector of Z = b1XY + e2

We now have all of the elements in E(Σ), the expected covariance matrix and M , the3

mean vector of the model Z = b1XY + e4

E(Σ) =



V(X) C(XY ) b1(V(X)µY +
C(XY )µX)

C(XY ) V(Y ) b1(V(Y )µX+
C(XY )µY )

b2
1(V(X)µ2

Y + V(Y )µ2
X

b1(V(X)µY + b1(V(Y )µX+ +V(X)V(Y ) + C(XY )2

C(XY )µX) C(XY ))µY C(XY )(µY + µX)2

−µ2
Xµ2

Y ) + V(e)


(67)

E(M) =
[

µX µY b1(C(XY ) + µXµY )
]

(68)

Since b1 appears in multiple cells of the expected covariance matrix, and does not5

only appear as a squared term this gives us the constraints necessary to determine both b16

and Ve using an optimizer such as maximum likelihood.7
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