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Statistical modeling is a tricky business! When the goal
is simply to generate predictions, some models may perform
better and some worse, but at least there are reasonable feed-
back mechanisms available to the modeler, in that perfor-
mance can always be checked against data that were not used
for model development. When the goal is instead scientific
inference, to learn something more fundamental about the
phenomena studied, it can in some cases take many years or
decades for further studies to debunk or confirm inferences
made on the basis of models. This is easy to understand in
the context we will address here: Mathematics and language
performance of school students typically grows in a corre-
lated manner, so it is ‘relatively’ straightforward to take some
past performance scores and generate some reasonable pre-
dictions further ahead in time. If a researcher instead wants
to use students scores to learn why domains like maths and
language are correlated, and potentially to develop targeted
interventions leveraging this understanding, there are many
possible stories, such as genetics, parenting styles, overlap
of content domains, etc. This makes it easy to weave to-
gether a plausible sounding story with a few fancy looking
equations that is, nevertheless, completely wrong. Maybe
a confounding variable was ignored, error prone measure-
ments were not accounted for, or the relevance of parameter
estimates for an inference was inflated – even the best inten-
tioned make such mistakes, and for the worst there are many
avenues to accrue interesting looking results. There are many
paths to improved inferences, including aspects like linking
to past findings, avoidance of treating exploratory work as
confirmatory (maybe via pre-registration), and careful model
fit checking, but there is unfortunately no simple recipe to

ensure valid inferences. This work aims to contribute some
small part by familiarizing developmental researchers with
the hierarchical continuous-time dynamic systems modeling
approach, which is in some cases more suited to specifying
and testing complex theories of development than the stan-
dards of mixed-effects regression or structural equation mod-
eling. We hope that by slowly building up in complexity,
some of the possible confusion posed by parameter depen-
dencies in multivariate developmental models becomes clear,
helping readers become more critical users (and reviewers!)
of such approaches. As such, although this paper addresses
an empirical domain, itis relatively tutorial oriented, and in
some cases expands in directions not explicitly relevant to
the empirical enquiry put forward, and cuts short on some
theoretical angles.

We start this paper by setting the stage with a rather high-
level description of how human development can be concep-
tualized. Reverting to theoretical propositions of life-span
developmental psychology (e.g., Baltes, 1987), we will ar-
gue that development under the constraints of limited re-
sources (e.g., time, energy) comprises both gains and losses.
This is because different domains, goals, actions etc. are not
independent from each other but rather have supportive or
competitive relations with each other (). We will then intro-
duce selective optimization with compensation (Baltes et al.,
1998) as universal elements of how successful development
(defined as the maximization of gains and the minimization
of losses) can be achieved given the fundamental challenge
of limited resources.

In a subsequent step, we translate this high level con-
cept into one specific area of functioning, namely academic
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competence development in multiple domains, focusing on
the domains of language and mathematics and trying to an-
swer how competence develops within and between these
domains. We will approach this translation from two com-
plementary directions. First, we will review notions and
models conceptualizing the interrelations between different
competence domains, argue that these interrelations, too, can
be supportive or competitive, and introduce some formal-
izations that capture these interrelations. Second, we will
review empirical literature that has investigated how com-
petencies in the domains of language and mathematics de-
velop over time. In the main part of the paper we look at
what continuous-time dynamic models are and how they can
help to formalize such investigations, then slowly build up
a model from a very simple growth curve to a more elabo-
rate form with distinct time scales for trends and dynamics,
interacting dynamics, and age moderated parameters. While
we are building the model up in continuous-time (i.e., differ-
ential equation) form, much of the procedure and commen-
tary also applies to similar models formulated using struc-
tural equation modeling software or the like. We finish with
the usual list of caveats and broad implications.

General Framework of Developmental Processes

It is beyond the scope of this paper to review all the propo-
sitions put forward by life-span developmental psychology
in general (for overviews, see ) or specifically with respect
to cognitive development (for overviews, see ). We want to
focus on aspects that are most relevant in the context of the
present paper, namely the notion of multidimensionality and
multidirectionality and the notion of development as a dy-
namic between gains and losses.

First of all, human development is not a uniform pro-
cess but needs to be conceptualized as comprising multiple
dimensions developing in multiple directions. This is al-
most a truism when considering distinct areas of function-
ing such as physical, cognitive, or socio-emotional develop-
ment. However, even within one area of functioning, mul-
tidimensionality and multidirectionality exists. A textbook
example is cognitive development in adulthood in which dif-
ferent trajectories of crystallized and fluid intelligence are
observed throughout the life span (e.g., Hartshorne and Ger-
mine, 2015). Not taking into account multiple areas or do-
mains of functioning will necessarily result in an incomplete
picture of human development.

Closely related to the notion of multidimensionality and,
in particular, multidirectionality is the theme of gain-loss re-
lations in development. Because humans are not equipped
with unlimited resources, development always comprises
both positive gains and negative losses. These dynamics can
be observed throughout the entire life-span, including child-
hood (Uttal and Perlmutter, 1989). For instance, the tran-
sition to schooling seems to be causally associated with the

increase of self-control capacities (Burrage et al., 2008) but
at the same time a decline in spatial skills. We will elabo-
rate on the causal mechanisms possibly underlying the gain-
loss dynamics below. For the time being, we would like
to emphasize that at least some aspects of these dynamics
might be explained by inherently supportive or competitive
relations between areas or domains of functioning. Given
the challenge of limited resources, heavily investing in one
area (e.g., academic competence) will necessarily come at
the expense of expertise in another one (e.g., craftsmanship).
The notion of gains and losses on multiple dimensions is
quite a fundamental one and can also be found in biologi-
cal (e.g., Waddington, 1957) and sociological (e.g., Feath-
erman & Sorensen, 1983) conceptions of differentiation and
specialization/canalization. There, too, is the idea that com-
mitment to one developmental track and consequent gains
therein implies the loss of alternative options, be it in areas
such diverse as cell differentiation (Ho et al., 2011) or career
progression (Heckhausen and Buchmann, 2019).

Individuals as active agents of their own development
(Heckhausen and Buchmann, 2019) orchestrate processes of
life management in order to negotiate the aforementioned dy-
namics of gains and losses. Generally, these processes com-
prise selection, optimization and compensation (SOC; for de-
tails, see Freund, Alexandra M., 2008). Selection (of devel-
opmental pathways, contexts, goals, action alternatives etc.)
aims at reducing the number of potential alternatives and
hence effectively investing resources in those that are viable.
Optimization aims at improving the efficiency of resource in-
vestments within the selected alternatives and compensation
becomes relevant when individuals reach the limits of their
capacities. Selection, optimization, and compensation are
very universal processes that can be meaningfully applied at
different levels of analysis (e.g., cell, individual, society) and
in different domains of functioning (e.g., cognition, emotion,
motivation). The application of these processes is respon-
sible for an age-related increase in specialization of moti-
vational and cognitive resources and competencies (Baltes,
1987). Selection, optimization and compensation also be-
come relevant when it comes to negotiating the supportive
or competitive relations between areas or domains of func-
tioning (Riediger and Freund, 2004). Conflicting goals due
to limited resources, for instance, can be resolved by priori-
tizing them (Freund and Tomasik, 2021) to arrive at an opti-
mal goal structure (Tomasik et al., 2017). This will become
relevant when we will discuss competence development in
multiple domains.

Competence Development as a Case in Point

Interestingly, the notion of fundamentally limited re-
sources and the assumption of supportive and competitive
relations between domains are also the starting point of some
influential theories of general cognitive (e.g., van der Maas



FORMALIZING COMPLEX DEVELOPMENTAL PHENOMENA AS CONTINUOUS-TIME SYSTEMS 3

et al., 2006) and academic competence development (e.g.,
van Geert, 1991). In the following section, we will attempt
to translate the high-level propositions of lifespan develop-
mental psychology to cognitive development in the academic
context and then summarize some of the recent reviews and
meta-analyses that have investigated competence develop-
ment in multiple domains.

The starting point of our elaborations is the observation of
a positive manifold in both general cognitive abilities (e.g.,
) and academic achievement (e.g., ). Scores in a battery of
cognitive tests typically correlate to a substantial degree, as
do scores on achievement tests in different subject domains.
This very robust finding has been replicated in countless
studies conducted in very different contexts. One popular ex-
planation of the positive manifold is the existence of a higher
order general factor g that accounts for the common vari-
ance between the single measures of intelligence (e.g., Car-
roll, 1993) or academic achievement (e.g. Roth et al., 2015).
Although there is some controversy around the psychological
meaning of g (e.g., Sternberg and Grigorenko, 2002) as well
as methodological questions regarding the establishment of it
by cross-sectional data (Borsboom et al., 2004), its psycho-
metric interpretation as a summary measure of the positive
manifold is straightforward (e.g., Bartholomew, 2004).

There are, however, at least two alternative explanations
for the positive manifold in general cognitive abilities and
academic achievement. The first explanation attributes at
least part of the common variance between the single skills
or abilities to (correlated) measurement error (e.g., Eysenck,
1987). Because it is virtually impossible to obtain purely
independent measures of single skills or abilities, some cor-
relation is inevitable resulting in the impression of a com-
mon factor. Most mathematical tasks, for instance, comprise
some verbal instruction and hence require verbal skills to
process them (e.g., Ajello et al., 2018). The second expla-
nation is a developmental one and hence compatible with
the propositions of life-span developmental psychology in-
troduced above. It assumes (primarily supportive) mutual
relations between single skills or abilities that over time re-
sult in parallel growth (van der Maas et al., 2006). Using
cross-sectional correlative data and employing factor analyt-
ical methods it then appears as if there was a higher-order
factor that would explain the positive manifold – which in
actuality could be a result of mutually reinforcing processes
over (longer periods of) time, possibly without any underly-
ing common cause.

The “mutualism hypothesis” builds on a special case of
a dynamic system model in which predominantly supportive
relations exist. In SOC thinking this suggests that little se-
lection is necessary, optimization works efficiently, and com-
pensation probably is not necessary as resources are not ex-
hausted by conflicting relations of growth in different ability
domains. One might think of different, maybe high-demand

situations where this is not the case and the dynamic sys-
tem is also characterized by competitive relations, for in-
stance due to resource conflicts. There then, selection pres-
sure and lacking capacities for compensation could translate
into growth in one skill or ability at the expense of another
one. Also, one needs to consider that the characteristics of
the system also depend on the temporal resolution at which
it is observed. Zooming into a system down to moment-
to-moment relations, for instance, could be associated with
stronger competitive relations, simply because at some point
we can do only one thing at a time and resource conflicts set
in.

There is some evidence that such a dynamic systems per-
spective on skills and abilities could provide important in-
sights into both the structure and the development of cog-
nitive and academic competencies. With regard to gen-
eral intelligence, van der Maas and colleagues (2006) have
demonstrated that the positive manifold could perfectly be
explained by the reciprocal reinforcement between single
cognitive abilities over time. A general factor g no longer
played a role and other phenomena known from research on
intelligence such as differentiation effects or the observed in-
crease in heritability of intelligence with age could be per-
fectly explained with a dynamic systems model.

A more sophisticated approach including more parameters
in the dynamic systems model was introduced by van Geert
(1991) to explain cognitive and language growth. Although
building on a completely different theoretical tradition than
life-span developmental psychology and using quite differ-
ent terms, metaphors and examples, it shares some of its as-
sumptions (such as the notion of limited resources) and com-
prises similar characteristics (such as the notion supportive
and competitive relations between processes). Cognitive and
language growth is modeled as an exponential process that
asymptotically approaches some capacity limit and is influ-
enced by self-reinforcing loops as well as growth in other
domains in terms of supportive or competitive relations. Sup-
portive relations exist when growth in one process (e.g., vo-
cabulary) accelerates growth in another one (e.g., grammar)
whereas competitive relations indicate growth in one pro-
cess at the expense of another one. The latter occurs when
processes compete for limited spatiotemporal, informational,
energetic, and material resources. It is beyond the scope of
this paper to elaborate the different variants of these models
much more extensively (for details, however, see van Geert
). Suffice to say that this dynamic systems approach allows
modeling and predicting different learning phenomena such
as vocabulary growth over time or the development of learn-
ing strategies. It does so without having to revert to a general
factor and actually no such assumption is needed.
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Mutual Relations Between Mathematics and Language

We have devoted some space to describe a general frame-
work of developmental processes and introduced some mod-
eling approaches because both are relevant for approaching
the substantive question of how mathematics and language
competencies develop over time. In the current literature,
two competing hypotheses are currently discussed (see Bai-
ley et al., 2020) and we want to introduce a potential third one
before reviewing the empirical evidence for all of them. The
medium function hypothesis () posits that language is a tool
for communicating mathematical concepts with others and
for building and retrieving mathematical knowledge from
long-term memory. This would imply a causal relation from
language performance to mathematics performance. Accord-
ing to this hypothesis, students who have a high level of
language skills not only will profit more from instruction in
general and hence grasp mathematical concepts more easily.
They will also be better able to retrieve their mathematical
knowledge from memory and to communicate these more
competently. In modeling terms, the medium function hy-
pothesis would be supported by finding that the cross-domain
supportive effects from language to mathematics are posi-
tive and significantly stronger than those from mathematics
to language.

Opposed to this notion of skill transfer is the think-
ing function hypothesis () that posits higher-level cognitive
functions underlying both language and mathematics perfor-
mance. The basic idea behind this hypothesis is the same
as that behind a g-factor in research on intelligence. Indeed,
research shows a strong overlap between cognitive processes
underlying both (). Most prominent examples comprise non-
verbal reasoning, working memory, processing speed, and
even vocabulary. Furthermore, neuroimaging studies suggest
a structural overlap of areas active when solving mathemati-
cal and reading tasks (). A common cause would also seem
likely, if one observed that mathematics and language com-
petencies develop in parallel over a longer period of time.

Not really reflected in the child development empirical lit-
erature but a somewhat more prominent theme in research
on adolescence and young adulthood is the notion that com-
petence development in language and mathematics could at
some point develop a competing relation (). This competing
relation may in part be explained by the sometimes high de-
mands that are put on students in secondary and tertiary edu-
cation, so that competence development in different domains
has to compete for resources such as time and effort. This
possibility has been taken into account by van Geert (1991)
at least conceptually. Another explanation could be forced
academic choices that adolescents and young adults (but not
children) have to make (e.g., when enrolling into a language-
oriented or a science-oriented school track). In any way, the
result of a competitive relation between language and math-
ematics would be a specialization in one subject domain at

the expense of the other.

To our knowledge, there are four recent reviews or meta-
analyses that have investigated the mutual relations between
competence development in language and mathematics ().
Chow and Jacobs (2016) argue that the nature of the con-
tribution of language to mathematics development has not
been well understood, hence assuming a unidirectional rela-
tion between the two domains. The authors then focus on
one specific subdomain in mathematics competence, namely
fraction knowledge and understanding, and synthesize the
relevant literature examining the role of language on frac-
tion outcomes in school-age children. Three observational
studies and one intervention study have been included in
their analysis, all of them suggesting that language signifi-
cantly contributes to fraction performance. No further de-
tails are given concerning the methodological approach to
modeling the interrelation between language and mathemat-
ics. De Araujo and colleagues (2018) provide a synthesis of
75 qualitative studies with a strong focus on multilinguistic
educational contexts and foreign language students. These
authors, too, are implicitly assuming language as a prereq-
uisite for mathematical competence development and based
on their review suggest that, for instance, it might be eas-
ier for foreign language students to engage in mathematics
learning in their first (or heritage) language rather than in
their second (or school) language. Because the studies re-
viewed are exclusively qualitative in their methodology used,
the interrelation between language and mathematics has not
been explicitly modelled. Koponen and colleagues (2017)
focused on investigating the association between rapid au-
tomatized naming (RAN) as a component of phonological
processing and mathematics performance. As a result, RAN
was significantly correlated with performance in mathemat-
ics (r = .37), in particular when calculation tasks were in-
volved. Almost half of the 33 studies reviewed were longitu-
dinal but the authors did not further investigate the direction
of effects and were conceptually assuming RAN as a pre-
dictor of mathematics performance without even taking into
account other causal directionality. Finally, there is the meta-
analysis by Peng and colleagues (2020) that is remarkable
for two reasons. First, with 344 studies and 393 independent
samples comprising more than 360,000 participants, it was
much more extensive than the other three reviews. Second,
the authors made use of the available longitudinal studies to
shed light on the direction of effects between language and
mathematics performance. Two different conceptual models
outlined above (i.e., medium function hypothesis vs. think-
ing function hypothesis) served as guidelines for the research
questions that they addressed. For testing the thinking func-
tion hypothesis, they collected evidence as to whether work-
ing memory capacity and/or general intelligence could ex-
plain the relations between language and mathematics. In
addition to this, the authors also investigated age (among
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other variables of less relevance here) as a moderator in in
this relation. The authors found an overall relation between
language and mathematics of r = .42 that was comparable
in magnitude with the meta-analysis by Koponen and col-
leagues (2017). Working memory alone accounted for 8 to
16 percent and general intelligence alone accounted for 21
to 23 percent of the variance in the relation between lan-
guage and mathematics. Working memory and intelligence
together accounted for 41 to 54 percent of the common vari-
ance. This could be seen as some evidence for the thinking
function hypothesis. Concerning the longitudinal relations
in the studies sampled, there was an average path from lan-
guage to mathematics (partialing out initial mathematics per-
formance) of r = .20 whereas the reversed path from math-
ematics to language (partialing out initial language perfor-
mance) was r = .22 and hence comparable in the order of
magnitude. Age, in general, mostly did not moderate these
relations, especially after controlling for general intelligence.
Taken together, the authors found that language and mathe-
matics performance share a substantial amount of variance
with working memory and general cognitive abilities, which
supports the thinking function hypothesis. Little evidence
is found for a directed effect from language performance to
mathematics performance as the medium function hypothe-
sis would suggest. Rather, reciprocally supportive relations
between language and mathematics seems to prevail. This
somehow qualifies the results of the former three reviews
and meta-analyses that all explicitly or implicitly assumed
a stronger unidirectional relation.

Challenges in Bridging Theory and Empirical Research

Considering all the studies that have investigated the topic,
it becomes obvious that the vast majority of them are not re-
ally able to answer the question of the mutual relations be-
tween competence development in language and mathemat-
ics. Especially when it comes to deciding between different
hypothesized models (such as medium function hypothesis
vs. thinking function hypothesis), many studies lack an ap-
propriate study design, appropriate data, or an appropriate
statistical method. It is hence not surprising that in most of
the published studies hypotheses the relations between the
two domains are not explicitly formalized.

This disconnect between theory and formal mathematical
specification is not uncommon, and does serve some func-
tion – uncritical eagerness to specify complex models can
lead to an unwitting dependency on auxiliary assumptions of
the models, and generate over-confidence in either uncertain
or wholly wrong inferences. However, the flip-side of this
coin is that without explicit formal specification, language is
slippery and can be interpreted in many ways, ensuring that
certain theories may sound rather fancy, garner apparent sup-
port from a range of studies, yet offer little to no predictive
value for new circumstances.

A variety of recent works have argued for the usefulness of
formal / computational models in theory development (), and
certainly, the process of examining verbal / linguistic theories
and explicitly specifying what the words mean in mathemat-
ical terms can be highly productive, both in terms of high-
lighting gaps and vagueness in the theory, and for determin-
ing how the theory may be compared to empirical data. Yet,
as Fried (2020) points out, statistical modeling approaches in
common use often do not allow for a direct connection to the-
ories. So, not only is there a gap to be bridged between ver-
bal theory and formal theory, but there is also a gap between
formal theory and statistical model. This latter gap often re-
ceives even less consideration than the former, and in fact
it often appears that statistical modeling approaches in com-
mon use tend to guide and limit the variety of formal theories
considered. The following section draws some material from
Driver (2022), and describes one such gap between typical
longitudinal statistical models, and the underlying theory.

Misspecified Temporal Structure

Many commonly used approaches to multivariate devel-
opmental models are some form of ‘discrete-time’ model,
which implicitly assumes processes evolve in discrete jumps
in time. In reality researchers usually tend to think of the
underlying processes as continually in flux. While the im-
portance of the distinction when it comes to modeling has
been discussed, (), this is regularly ignored and discrete-time
cross-regressive models are still the dominant paradigm in
such settings.

Driver (2022) shows that when a cross-lagged model is
used to represent a hypothesis where it is believed that a) the
processes actually evolve in discrete jumps, and b) the mea-
surement occasions u actually capture each and every one of
these discrete jumps, then there is no problem. To consider
such a system, we could imagine 3 people exchanging in-
formation by post, and the post is delivered daily. Person x
writes to person y, and person y in turn passes this informa-
tion on to person z. If we know that person x has received
new information, we can expect y to become aware of this
the following day, while it will take an additional day before
z knows it. In this case, we can precisely represent the causal
pathways using a temporal regression matrix (or path dia-
gram) that represents change over a time interval of one day
or one postal delivery, as per Figure 1. y is entirely dependent
on x for information, and z is dependent on y.

Using such a representation, the model will perform opti-
mally in terms of both prediction and inference – we can use
some knowledge of what information each individual has on
a particular day to predict future days, and we can use the
structure to understand that if for instance the link between
y and z is removed, z will not receive any information from
x. If we instead shift to an observation time interval of two
days, our representation no longer matches the data gener-
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x y z
x 1 0 0

y 1 0 0
z 0 1 0

Figure 1

Daily packets of information flow between persons x, y, and
z, over 3 days.

ating process, or causality, inherent to the system. For an
interval of two days, the temporal regression matrix would
look as follows, and the path diagram as per Figure 2.

x y z
x 1 0 0

y 1 0 0
z 1 0 0

Figure 2

Packets of information flow between persons x, y, and z,
across 6 days, when the time interval is two days.

In this case, while we have accurately represented how in-
formation flows through the system at time intervals of two
days, we have not represented the actual causality in the sys-
tem! One might infer from this representation that person y
is unnecessary for information flow between x and z, but that
is incorrect.

This discrepancy between the generating model, and the
information flow over an arbitrary length of time, captures
a problem inherent to many longitudinal modeling endeav-
ors, and is why discrete-time cross regression parameters
often should not be used as the basis of scientific infer-
ence. Even when the true data generating function is a dis-
crete time function, whenever more than one step of change
has occurred between observations the inferences become
problematic. Since most psychological processes tend to be
thought of as continuously existing and interacting with each
other, rather than interacting only when we decide to measure
them, this poses something of a problem! Regular longitudi-
nal structural equation modeling and network modeling ap-
proaches just can’t represent the data generating processes
that researchers typically hypothesize, but the availability
of modeling tools and mathematical understanding leads to
their usage anyway.

Bringing Theory and Statistics Closer with Continuous-
Time Dynamic Systems Modeling

Continuous-time dynamic systems are essentially a
stochastic differential equation, paired with a measurement
model. Many fields in the ‘natural’ sciences are well ac-
quainted with differential equations, they are in a sense the
natural mathematical language for continuously changing
processes, and the ‘stochastic’ addition simply allows for un-
certainty in the direction of change. Social scientists tend
to be raised on a diet of regression, leading to models of
change described in terms of regressions over time. Such
an approach is certainly not ‘wrong’, but it is important to
understand the limitations, and there may be circumstances
where it is advantageous to switch to a differential equation
based approach. While it certainly does not resolve all dif-
ficulties in linking theory to statistics, a significant virtue of
any such differential equation approach is that it does resolve
(or at least improve on) the issue discussed above, of mis-
specified temporal structure, when processes change and in-
teract continuously.

Continuous-time / differential equation models have been
discussed in the social sciences as early as Coleman (1964),
with substantial further development closer to psychology by
Singer (1993), Oud and Jansen (2000), S.-M. Chow et al.
(2005) and Voelkle et al. (2012), amongst others. While soft-
ware from the natural sciences / mathematics can of course
be used for social science purposes, typical features of the
research questions and data can make packages developed
more explicitly with a social science orientation more func-
tional and accessible. Such software packages include ctsem
(Driver et al., 2017), dynr (Ou et al., 2019), and BHOUM
(Oravecz et al., 2016). This article will describe models
at a level of abstraction applicable to any software that can
fit multivariate stochastic differential equations with a mea-
surement model, but will at times also include additional la-
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belling of matrices relevant to the ctsem software, and code
for model fitting with ctsem plus additional results are avail-
able in the supplementary material.

Some additional benefits of longitudinal modeling in the
ctsem framework, as distinct from classical structural equa-
tion modeling, are the possibilities of specifying a wider
range of temporal relations, including features such as time-
varying parameters, moderated correlations, random and co-
variate based individual differences in any parameters, and
an easy shift between frequentist and Bayesian approaches.
In the present article we do not explore the limits of the soft-
ware, but instead endeavour to connect readers more famil-
iar with regression and structural equation approaches to the
possibilities for both thinking about and specifying theories
of change as continuous-time dynamic systems.

Empirical Research Agenda

We have discussed three theories that describe alterna-
tive ways that mathematics and language performance may
relate. The thinking-function hypothesis poses a common
cause behind the two, the medium-function hypothesis poses
supportive relations from language to mathematics, and a
competitive hypothesis suggests that focusing learning in ei-
ther may detract from the other. We do not propose any
strong test of the theories here, the different theories may in
fact all be plausible together and it may be a question of time
span and granularity, however we plan to build and fit mod-
els of competence development that can encapsulate some
aspects under consideration. This will hopefully both pro-
vide some indications of theoretical support or debunking,
as well as provide a basis from which additional models and
or data may be included and compared. Given the nature of
the data available to us, we will focus attention on change
at time-scales ranging in the approximately weekly to yearly
range.

Data

The data we use come from the Mindsteps online learn-
ing platform (see https://www.mindsteps.ch/), which
offers teachers and students in a variety of Swiss regions
many thousands of questions in a range of subjects to practice
and test from.

A distinctive feature of the system is that it covers topics
and competencies from the third grade in elementary school
until the third grade in secondary school, thereby spanning
seven years of compulsory schooling. The item bank is based
on a competency-based approach to learning (see Sampson
and Fytros, 2008) that emphasizes learning progress and
learning outcomes during the learning process. All items
used are embedded in a curriculum, as suggested by Shepard
() and Shavelson (2008). Currently, the item bank comprises
up to 15,000 items per school subject.

In Mindsteps, there are two thematically identical types
of item banks. The practice item bank is openly available
to all students and teachers for training and teaching pur-
poses. Students can autonomously use this item bank to cre-
ate and answer an item set from a topic domain on which
they choose to or are instructed to practice. This can be done
virtually anywhere that has Internet access. The testing item
bank, in turn, can be used to evaluate students’ ability lev-
els and learning progress, as well as identify their strengths
and weaknesses in a given content domain. Teachers can se-
lect items according to desired competency domains, single
competencies, or topics of the official curriculum and create
assessments that can be taken by students on computers at
school. There are three ‘use cases’ for this item bank that
result in three different types of feedback. First, teachers
may want to assess their students’ ability levels or learning
progress regarding a general competency domain, such as
reading comprehension or algebra. Second, teachers might
be interested in a single competency among their students,
such as comprehension of simple discontinuous texts or sum-
mation in the number range of a million. Finally, teachers
can administer tests on topic-specific knowledge to assess
students’ level of mastery. Such topics usually are very nar-
rowly defined and often refer to the content of single instruc-
tional units.

For the present analyses, we have been using all data avail-
able from both item banks and all use cases. Each assess-
ment consisted of at least 10 items. In a prior modeling
step, data from the years 2018 to 2021 was fit to multiple
large uni-dimensional item response theory based models,
and individual ability scores based on point estimates for
each assessment session were extracted. More details on the
Mindsteps software, as well as discussion of an earlier it-
eration of the modeling approach, can be found in Berger
et al. (2019). Epistemological, methodological, and practi-
cal issues of the software are discussed by Tomasik and col-
leagues (2018). For pragmatic (i.e., computational) reasons,
we subset the available data to those students with at least 10
assessments (in any of 5 domains), who have used the sys-
tem for at least 1 year, and for whom at least four out of five
domains have been assessed at least once. This left us with
N = 2,786 students, and 95,649 observation occasions in to-
tal. For the purpose of this investigation, we use variables
from the two German language domains, reading (dles) and
grammar (dsif ), as well as the three mathematics domains,
‘numbers and variables’ (mzuv), ‘forms and space’ (mfur),
and ‘measures, functions, and probability’ (mgfd).

Continuous-Time Framework

The most common approaches to addressing questions of
change in developmental psychology are probably multilevel
regression, and structural equation modeling. While one can
usually find ways to shoehorn a theory and data combination
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into a particular modeling approach, when the modeling ap-
proach is not a good fit for the theory and data, it can be that
either theories are altered to suit the modeling, unnecessary
auxiliary assumptions are required, or even, as we described
above, that the theory that was thought to be examined is un-
knowingly not! For such reasons, we will describe the use of
a continuous-time, stochastic differential equation approach.
Such an approach is at times uncomfortable for the average
psychological researcher, usually raised on a diet of ANOVA
and regression rather than the differential equations that are
more typically the domain of ‘harder’ sciences. While they
take some time to get used to, for formalizing systems that
tend to function and interact continuously, differential equa-
tions can often offer a more natural formalization with less
need for compromises and ‘slipperiness’ between the spe-
cific formalization and the actual theory of interest. This
section contains some material based on Driver (2022) and
Driver and Voelkle (2018a), for more elaborated discussion
one should see the sources and other references. For the less
mathematically inclined, briefly skimming this section be-
fore focusing on the subsequent model building section may
be a fruitful approach.

Discrete-time processes

To understand the continuous-time systems framework, it
can be helpful to start from the (hopefully) more familiar
discrete-time perspective. Most models that address coupled
and fluctuating processes over time, such as vector autore-
gressive, cross-lagged panel, and multivariate change-score
models, contain, or can be re-written to contain, (e.g. Voelkle
& Oud, 2015) equation components for modeling the pro-
cesses that look something like this:

ηu = Ayu−1 + b +Gzu z ∼ N(0, 1) (1)

Where η is a d length vector of process values (either ob-
served data or hypothetical latent states), u is an index of
measurement occasion, A is a matrix of temporal regression
coefficients, b is an intercept, and G is the effect matrix of the
d length system noise vector z, where z contains independent
and identically distributed deviations with zero mean. Many
extensions and variations are in use, non-linear forms may
be written more generically as functions, but the issues dis-
cussed herein, while broadly applicable, are simplest to un-
derstand using the basic form shown. For a recent overview
contrasting different approaches to cross-lagged models and
software, see Ruissen et al. (2021).

Continuous-Time Processes

In discrete-time systems, the matrix of temporal effects
represents regression strengths between two points in time,
as in the day or two day examples discussed in the earlier

letter writing example. Continuous-time approaches can be
intuitively thought of in much the same way, but simply com-
pressing the time interval to a ‘very small’ value. This allows
for usage of a conceptually similar temporal effects matrix,
the only difference being that the matrix represents the in-
fluence of the current state of the system on the change in
the system – which is actually analogous to the approach
used in change-score structural equation models, where an
autoregression of 1.00 is always applied in addition to any
estimated self and cross feedback parameters. A continuous-
time form of the vector autoregression discussed is:

dη(t) = (Aη(t) + b)dt +GdW(t) (2)

This looks similar to the discrete-time form, but instead of
telling us the new value of η given one step forward in time,
it tells us how y is changing at the moment. Some mathe-
matical complications due to the nature of stochastic differ-
ential equations are present: the dt on the right hand side,
which can simply be thought of as a very small step in time,
and the dW(t), which represents white noise in continuous
time. To compute η at some time point given an earlier value,
one needs to solve the system. This is numerically involving
and described in detail in Voelkle et al. (2012), however sim-
ple approximations using linear extrapolation can be done by
hand, and are quite helpful – both for numerical simulation
and to follow the basic logic.

ηu = ηu−1 + ∆t(Aηu−1 + b) +Gzu z ∼ N(0,∆t)) (3)

Essentially then, one computes the deterministic rate of
change using A and b and the earlier value of η, then multi-
plies this by the length of time step ∆t desired. The variance
of the white noise element z is then also ∆t, resulting in a sys-
tem noise (co)variance of GG⊤∆t. Shorter steps are (up to a
point) more accurate, but require more computations. Many
refinements are possible – this simply represents the basic
idea, which is called the Euler-Maruyama method in the con-
text of stochastic differential equations. The linear system
shown also allows an ‘exact’ (to numerical tolerances, any-
way) one-step solution. While this is described in more detail
elsewhere (e.g. Driver & Voelkle, 2018a, contains the equa-
tions and code for plotting), the basic component involves
the matrix exponential, with temporal regression coefficients
for particular time intervals given by eA∆t.

Measurement Model

The basic linear measurement model for the system can
be represented as:

y(t) = Λη(t) + τ + ϵ(t) where ϵ(t) ∼ N(0c,Θ) (4)
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y is the c length vector of manifest variables, Λ represents
the factor loadings, and τ the manifest intercepts. The factor
loadings and manifest intercepts govern how the latent pro-
cess looks when observed by one or more of the indicators –
the loading sets the scaling factor, and the intercept the offset.
In cases with only one measured variable per latent process,
they are commonly set to 1 and 0 respectively to ensure the
model is identified, and does not have multiple parameters
that can be varied to give the same predictions. The manifest
residual vector ϵ has covariance matrix Θ, and this captures
the proportion of variation in the observed variables that does
not aid in predicting future states of the system. This can be
thought of simply as measurement error due to randomness,
as genuine fluctuations on such a short time scale that it is
more effective to ignore them, or as some mixture of the two.

Individual Differences

Stable individual differences in any of the process or mea-
surement model components can be included. Given suffi-
cient data, the model may be fit separately for each individ-
ual, resulting in unique parameter estimates for every sub-
ject. Large and informative enough datasets are still quite
rare, so approaches that assume some sort of similarity across
subjects, thereby increasing the precision of parameter esti-
mates, are helpful. Such approaches can be to assume certain
parameters are a) fixed across all subjects, b) vary as a func-
tion of some observed covariate(s), and or c) vary according
to some underlying distribution. For b), the term ‘fixed ef-
fects’ is often used, and for c), ‘random effects’, though the
use of such terms can be a little heterogeneous and confus-
ing across fields. Approaches to actually estimate individual
differences in parameters such as a standard deviation or cor-
relation can be somewhat complicated, we will keep discus-
sion of such aspects to a minimum, but for further details see
empty citation.

Different Forms of Uncertainty – System and Measure-
ment Noise

One of the core benefits to the state-space modeling ap-
proach, in which a latent system model is coupled to some
form of measurement model, is the ability to decompose the
variance of the system into two (or more) portions. The mea-
surement error portion contains variation that is essentially
discarded from one observation to the next, while a system
noise component contains variation that, although it could
not be predicted by the deterministic portion of the model,
is nevertheless informative for predicting future states. The
visual of Figure 3 may help with this understanding.

Model Building

To illustrate how the different components of the process
and measurement models can be used and combined to rep-
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Figure 3

These two plots show the distinction between measurement
error, on the top, and system noise, on the bottom. The plots
show a set of data from multiple subjects as black points, the
red points refer to a single individuals observations, and the
blue line refers to that individuals latent process. In the top
plot, our knowledge of the specific individuals points helps
very little with predicting the trajectory of the latent pro-
cess, because deviations away from the central tendency of
the group are simply measurement error. In the lower plot,
such deviations represent true change in the process, and are
informative for future predictions.
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resent a wide range of developmental theories, we will walk
through a progression of models. We will start with a simple
linear growth model, then incorporate individual differences,
nonlinear trends, common and or causal fluctuations, and
multiple time-scales. While we describe such an approach
here largely for tutorial purposes, it is generally good practice
in model building to start simple, and build up from the large
foundational components to the more sophisticated. This can
also provide a form of sensitivity checking, in that if different
models lead to wildly different inferences for reasons that are
not obvious, caution in interpretation is definitely warranted!
Note also that in terms of inference, we are using the max-
imum a posteriori estimation approach of ctsem (Driver &
Voelkle, 2021), which can also be thought of as a form of pe-
nalised likelihood. For general parameters in a dataset of this
size this will have very little influence, but when we discuss
moderated parameters in complex models, it can reduce cap-
italising on chance results by keeping estimates more con-
servative and ‘boring’ as such. Results from all model fits,
both with priors and without (i.e., maximum likelihood) are
available in the supplementary material.

Linear Growth

While linear growth without individual differences is a
highly unrealistic specification for most, if not all, develop-
mental processes, it is a helpful starting point from which to
develop understanding and build upon. In this formulation,
the basic process (Equation 2), can be simplified by dropping
matrices of zeroes, to just:

dη(t) = bdt (5)

Which tells us quite simply that the slope of change (d)
in our maths and language latent processes η at time (t) is
determined by the continuous intercept b, multiplied by the
change in time dt. In the model we are developing there are
two latent processes, language and maths, so η and b are vec-
tors of length two. The measurement model is as already
shown in Equation 4, and in this case involves 5 indicator
variables. Two variables are used to measure language skill,
and three to measure mathematics. The first indicator for
each latent process is constrained to a factor loading of 1.00
and an intercept of 0.00, to ensure identification of of the
model. After fitting the model, we obtain estimates translate
to growth expectations as shown in Figure 4. The point es-
timates of the model fit are shown here in expanded matrix
form, with zero matrices left in place to facilitate understand-
ing. Note that throughout this work, lower triangular matri-
ces along with a matrix transformation function UcorrSD-
toCov or UcorrSDtoChol are occasionally used in place of
a covariance matrix. This transformation function takes a
matrix of standard deviation and ‘unconstrained correlation’
parameters, ensuring that the free parameters can take on any

value and still result in a positive-definite covariance matrix,
or the Cholesky factor of a covariance matrix. See Driver and
Voelkle (2018a) for more details:
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Individual Differences in Linear Growth

Of course, single values for the expected initial values and
growth across individuals and age is an obscenely unlikely
proposition, a big reason we are interested in such models
is because individuals differ in growth! So an obvious next
step is to allow for individual differences in these parame-
ters. Such individual differences can be achieved either via
including additional latent variables to estimate the mean and
standard deviation of the distribution of parameters (i.e., a
’random effects’ model), or by (also) regressing model pa-
rameters on one or more covariates.

Linear Growth – Random Effects. Starting with ran-
dom effects, we can allow for varying initial intercepts (in
ctsem parlance ‘T0MEANS’ for ‘time zero latent process
means’) by estimating the initial covariance matrix parame-
ters (‘T0VAR’ for ‘time zero variance / covariance matrix’ in
ctsem) for the latent ‘processes’ in the model. For random
variation in any parameters other than the initial intercept,
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Figure 4

Expectations from linear growth model fit.

these need to be included as additional latent processes in the
system model, which exert appropriate influence depending
on which type of parameter they are (Note that for users of
ctsem, this is automated and occurs in the background when
individually varying parameters are requested). Continuous
intercepts are one of the simplest parameter types to include,
they come in as additional processes that exert an influence
of 1.00 on the original processes of maths and language. This
influence occurs via the temporal effects, or drift, matrix that
we could previously ignore as it contained only zeroes. Once
this is configured, the b vector from Equation 2 is no longer
needed – the relevant components are now part of the ex-
tended state vector η. Equation 6 shows the point estimates
for this expanded initial latent state distribution.
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(6)

With the incorporation of the continuous intercepts as la-
tent states, the drift (temporal-effects) matrix is no longer all
zero but contains some fixed values of 1.00 where the effect

flows from the two continuous intercepts (columns 3 and 4)
to our language and maths processes of interest (rows 1 and
2):

d
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(7)

Our specified measurement model appears at least not ob-
viously terrible, with point estimates suggesting that all indi-
cators load similarly on the latent factors (seen in the Λ ma-
trix) and have similar measurement error standard deviations
(the Θ matrix):
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(9)

At this point we have the classic multivariate linear latent
growth curve model with (co)varying slopes and intercepts,
formulated as a state-space stochastic differential equation.
The results in Equation 6 show the pattern one would ex-
pect for such constructs, wherein the initial latent states for
maths and language positively covary, the continuous inter-
cepts do also, and the initial states are negatively related to
the continuous intercepts – performance growth is expected
to be lower for those who start with higher performance. The
terminology of initial states and continuous intercepts may
seem confusing to those accustomed to intercepts and slopes,
but clarity here is important: In this case, because we have a
simple linear model, the initial latent state η(t0) is equivalent
to the intercept term in a growth model, and the continuous
intercept is equivalent to the linear slope. Once more com-
plex models are used, this one to one relation breaks down
to a degree – for instance in systems that fluctuate around a
baseline, as in many vector autoregressive type models, the
continuous intercept may determine the baseline.
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Linear Growth – Covariate Moderated Parameters.
While the random effects approach can do a good job ac-
counting for and understanding individual differences in the
model parameters, as well as relations between such indi-
vidual differences, there are often both substantive and prag-
matic reasons for including additional covariate effects to
moderate parameters of the model. Substantive reasons are
typically when one expects that system parameters will vary
along with the covariate and one wishes to account for and
understand this relation. Pragmatic reasons can be that one
would really wish to allow random effects on more parame-
ters, but the computational cost and difficulties are too high.
Including covariate moderation effects can allow for at least
some of the heterogeneity, and generally imposes substan-
tially less computational burden than random effects. At
present ctsem allows only linear moderation effects (ex-
pandable to polynomials via the standard technique of in-
cluding additional transformed covariates), though in princi-
ple any functional form is possible – a similar approach but
using step-functions (i.e., groups) can be seen in structural
equation model trees (Brandmaier et al., 2013), for which a
proof of concept was also implemented with an earlier ver-
sion of the ctsem software (Brandmaier et al., 2018).

While we could simply allow for moderation of the same
parameters we included random-effects for – our initial states
and continuous intercepts – a key benefit of the sometimes
awkward seeming approach to covariance matrices used in
ctsem is that we can also allow for moderated standard de-
viations and correlations, along with any other parameter.
We could of course treat all of these as random effects, but
elect not to for ease of both computation and explanation.
For our model development we will include an age covari-
ate, centered at 13 years. Not only does this allow us to
account for changing relations between starting points and
growth as children age, but this can also be used to detect
and account for changes in measurement properties, such as
the factor loadings or measurement error variance. Fitting
this model results in a similar overall pattern to the unmod-
erated model, with age moderation effects shown in Table
1. These moderation effects indicate that, as expected, initial
language and maths performance (e.g. T0m_lang) rises with
age. The growth rate for language (T0m_cint_lang) appears
largely unaffected by age, while the growth rate for maths
also rises with age. Factor loadings (e.g. lambda_mgfd for
one of the maths indicators) are relatively unaffected, while
measurement error standard deviation for maths indicators
(e.g. mvarmfur) reduces with age. Some indicators do show
a tendency to a higher measurement intercept parameter (e.g.
mm_dsif ) with increasing age. This tendency suggests that,
as we would expect given the clear structure in the data and
the amount of it, additional factors may improve the model
from a statistical standpoint – there is some residual growth
in the indicators that is not accounted for by the latent pro-

cesses. In terms of the standard deviations and correlations
amongst initial states and continuous intercepts, there are two
effects where the 95% confidence interval does not include
zero. The correlation between initial maths performance
and the rate of growth (T0var_cint_maths_maths) appears to
increase with age, while the relation between mathematics
growth and language growth (T0var_cint_maths_cint_lang)
appears to decrease. While such results are useful for in-
ferences regarding direction of effects, it is difficult to com-
prehend the magnitude of effects due to the nonlinear matrix
transformations used to convert the age moderated ‘uncon-
strained correlation’ parameters into correlations. For such
purposes plots of the expected correlations, conditional on
age, are very helpful. Figure 5 shows all correlations within
and between initial states and slopes. From this figure it is
clear that the general pattern is no change in the correlation
between initial states, reduced correlation in slopes as age in-
creases, and a lessening of the negative correlation between
initial states and slopes with age.

Table 1

’Age moderation effects on the linear latent growth with ran-
dom effects model.

Est. SD 2.5% 97.5%

T0m_lang 0.05 0.01 0.04 0.07
T0m_maths 0.07 0.01 0.05 0.09
T0m_cint_lang 0.00 0.01 -0.01 0.01
T0m_cint_maths 0.03 0.01 0.01 0.04
lambda_dsif 0.00 0.01 -0.01 0.01
lambda_mgfd 0.00 0.01 -0.02 0.01
lambda_mzuv -0.01 0.01 -0.03 0.00
mvardles 0.00 0.00 -0.01 0.00
mvardsif -0.02 0.00 -0.03 -0.02
mvarmfur -0.03 0.00 -0.03 -0.02
mvarmgfd -0.03 0.00 -0.03 -0.02
mvarmzuv -0.02 0.00 -0.03 -0.02
mm_dsif 0.03 0.00 0.02 0.04
mm_mgfd 0.01 0.01 0.00 0.02
mm_mzuv 0.04 0.01 0.03 0.05
T0var_lang 0.00 0.01 -0.02 0.02
T0var_maths_lang -0.01 0.01 -0.02 0.01
T0var_maths 0.00 0.01 -0.02 0.01
T0var_cint_lang_lang 0.02 0.01 0.00 0.04
T0var_cint_lang_maths 0.02 0.01 -0.01 0.04
T0var_cint_lang 0.00 0.01 -0.01 0.01
T0var_cint_maths_lang 0.01 0.01 -0.01 0.04
T0var_cint_maths_maths 0.04 0.01 0.02 0.07
T0var_cint_maths_cint_lang -0.07 0.03 -0.12 -0.02
T0var_cint_maths 0.01 0.01 0.00 0.02
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Figure 5

Expected correlations between initial states and slopes, con-
ditional on the (centered at 13 years) age covariate, for the
moderated linear growth model. Index 1 and 2 are initial
language and maths performance, respectively, while 3 and
4 are language and maths slopes, respectively. 95% confi-
dence intervals are shaded.

Including Dynamics

So far, we have only developed a ‘static’ model of change
– the model predictions for an individuals state at any point
in the future depends only on the system parameters for that
individual, and time (Voelkle et al., 2019). If we shift to a
truly ‘dynamic’ model, in which we acknowledge that un-
predictable changes occur in our constructs of interest, the
model is likely to perform (i.e., predict) better, and can be
used to consider a range of new hypothesis regarding rela-
tions between these unpredictable fluctuations. For instance,
while long term maths and language performance trends tend
to correlate, shorter term fluctuations could be driven by a
‘more common cause’ such as motivation, or may show re-
duced correlation due to competitive processes. To allow for
such fluctuations, it is usually necessary to relax the implicit
assumption that all information from earlier states is carried
forward in time, otherwise the variance goes to infinity as
everything of the past is kept and new noise is continually
added. To relax this assumption we need negative values in-
stead of zeroes in the diagonals of the temporal effects matrix
(similar to a discrete-time vector autoregressive model where
autoregressions of less than 1.00 are needed). With a nega-
tive auto-effect (the diagonals of the temporal effects matrix),

when a system fluctuates above it’s deterministic trend, the
negative dependency on earlier states pushes the system back
down towards the expected trend, and vice versa for down-
wards fluctuations. Positive dependencies are also plausi-
ble over limited time-spans, but become ‘explosive’ without
other mitigating model elements. Allowing for temporal ef-
fects and system noise brings us back to the full Equation
2. At first, we will only free the diagonals of the tempo-
ral effects, such that any dependency between changes in the
maths and language latent processes is wholly dependent on
the correlated system noise. Put differently, we assume that
maths and language may have correlated changes that the de-
terministic trend component could not account for, and we
do not allow for any directionality between these changes at
present. Directionality, wherein changes in one process lead
to changes in the other, will be incorporated in a later step.

By freeing the auto-effects in the temporal dependency
matrix, the deterministic trend becomes non-linear. Instead
of the trend being simply linear, the trend now incorporates
the idea that performance may rise more slowly, the higher
performance is. This relation could already be seen when we
fit the linear growth model with random effects, in that there
was a negative correlation between the initial state and the
growth rate – but in that case it was only a relation between-
subjects, and any specific subject would grow linearly. The
updated formulation accommodates such a concept within-
subject.

With free auto-effects and correlated stochastic change in-
cluded, the point estimates for the system equation are shown
in Equation 10, and the expected trajectories for a typical
student in the sample, before knowing any of their individual
scores, is shown in Figure 6. After accounting for students
performance scores, the estimated forward predictions (i.e.,
conditioned on past scores) of the model are far less smooth,
as Figure 7 demonstrates. In this plot it is easy to see how
for periods of time when there is more data on a student, the
students scores in this period influence predictions and can
result in substantial fluctuations in the expected trajectory.
This contrasts with periods of less data, where predictions
are more dependent on the overall trend. In either case, the
proportion of measurement error is estimated to be relatively
large, meaning that predictions do not tightly follow each in-
dividual observation.

What can we really learn from our updated model how-
ever? Two main aspects regard the shape of the overall trend,
which is now more flexible, and the shorter term fluctuations.
Regarding the overall trend, it seems that individual growth
in performance slows as performance rises – this we can in-
fer from the negative auto-effects or Figure 6. Regarding
shorter term fluctuations in performance, the system noise
covariance in Equation 11 shows that the random changes in
language and maths performance are highly correlated, with
similar variances. Such results speak against the notion that
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there may be competitive relations in the short term between
learning in the two domains. Had we seen negative correla-
tions in the system noise, or at least substantially lower cor-
relations than between the long term trends, the competitive
hypothesis would have been more plausible. Distinguishing
between the thinking and medium function hypotheses is not
yet possible, given the lack of directionality in our model.
When we consider the age moderation effect on the system
noise correlation, there is some influence, with the system
noise correlation reducing in older children, shown in Fig-
ure 8. The most obvious interpretation of this result is that in
older (or perhaps higher performing) children, fluctuations in
performance are due somewhat less to common causes, such
as general motivation, and more to unique(er) factors such as
time spent studying for the particular subject recently.

Multiple Time Scales and Directional Dynamics

The results from such a dynamic model can be highly
informative, and once individual differences in parameters
are included sometimes verging on overwhelming. There is,
however, a need for caution in interpretations. One particular
issue in the model specification as it stands presently is that
the shape of the long term trends are confounded with the
time scale of fluctuations. That is, the auto-effects terms on
the diagonal of the temporal effects matrix A are doing dou-
ble duty – they set the curvature of the overall deterministic
trend, as well as how long the short term fluctuations persist
in the system. This kind of issue is why two-step procedures
where the data first have trends removed are sometimes used,
however it can be more meaningful and statistically appropri-
ate to include the trend and the dynamics in the same model,
unless one component is known with fairly high certainty.
To resolve this, we can expand the system in a similar way
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Expected trends before conditioning on data, once auto-
effects and stochastic change are included in the model. 95%
confidence intervals are shaded.
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Predictions for one student based on past data, once auto-
effects and correlated stochastic change are included in the
model.
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Figure 8

Correlation between random changes in language and maths
performance, conditional on the (centered at 13 years) age
covariate, for the model with freely estimated auto-effects
and system noise. 95% confidence intervals are shaded.

as when we included the continuous intercepts as a random
effect. In this case, we create an extra process containing the
system noise for each of language and maths, fix various pa-
rameters so this process is centered around zero, and estimate
separate auto-effects for each. We then duplicate the first two
columns of the factor loading matrix Λ, as these additional
dynamics processes will not interact with what are now the
trend and continuous intercept processes, but are essentially
just added on top to generate the model predictions. In this
way, we estimate an overall trend, and then around this trend
we have dynamic fluctuations, with neither contaminated by
parameter estimates for the other.

In addition to separating trend from dynamics, we will
also address the question of directionality between fluctua-
tions now. We achieve this by freeing the cross-effect param-
eters between language and maths dynamics. The system
structure and fitted point estimates for the model are now
seen in the temporal effects matrix of Equation 12 and the
system noise matrix of Equation 13

In the model with only one auto-effect for language and
one for maths, the auto-effects were approximately -0.60, re-
sulting in autoregressions after 1 year of exp(−0.60 × 1) =
0.55. Now that we have allowed for different time-scales by
splitting trends and dynamics, auto-effects for the trend com-
ponents are close to zero, resulting in expected trends that
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look much closer to the linearity of our initial simpler mod-
els. The time-scale of the dynamics components are now
much faster (more negative), and there are negative cross-
effects between the two. These dynamics may be easier un-
derstood by referring to Figure 9, which shows that an up-
wards shift in language performance tends to be followed in
the coming months by a drop in maths performance. The
reverse effect, of maths on language, is also slightly negative
but the confidence interval heavily overlaps zero. This pat-
tern of results is very much contrary to the medium-function
hypothesis, which suggests that improvements in language
should lead to improvements in maths, and more so than
maths improves language ().

The typical interpretation of such a negative cross-effect
partly aligns with the idea that time is scarce, and moments
spent focusing on one domain inevitably mean other domains
may suffer. However, such an interpretation is hard to rec-
oncile with the high correlation in the system noise term.
Plotting the temporal dynamics in combination with with the
system noise, as suggested and described in detail by Driver
(2022), means Figure 10 tells quite a different story. In this
case, we can see that whenever one process fluctuates up-
ward, the other typically does the same but to a slightly lower
magnitude. In such a scenario, the negative cross-effect from
language to maths essentially just means that when language
rises, so too does maths, but that this perturbation in maths
dissipates faster than is typical. So, when maths perfor-
mance fluctuates together with language performance, the
change tends to dissipate quicker than when maths perfor-
mance fluctuates alone or in the opposite direction to lan-
guage performance.

Interestingly, when we look at the age moderation effect
on system parameters in Table 2, both cross-effect param-
eters become more negative with age. While we would still
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Figure 9

Temporal dynamics of fluctuations in maths and language
performance, for the multiple time-scale model with direc-
tional effects, assuming independent initial changes. 95%
confidence intervals are shaded. At time zero, the second
process in the title is given an exogenous perturbation of
1.00, leading to changes in the first process. This order
relates to standard row, column indexing for matrices and
matches the temporal effects matrix.

urge caution because of the strong positive correlation in sys-
tem noise, this increasing negative relation with age does
neatly map onto some ideas regarding increasing competi-
tion for resources between domains as students progress in
their education ().

Discussion

Researchers in developmental and educational science are
inclined to use the notion of “dynamics” (e.g., ), sometimes
in an inflationary way and without having a theoretical or
empirical foundation for doing so. Dynamics, sometimes it
seems, is then used to refer to the complexity of a process that
is simply not very well understood. Or to change in general
that is inherent to any developmental or educational process.

On closer inspection, dynamics can have a variety of
meanings. First, dynamics might refer to short-term fluc-
tuations or deviations from a longer term developmental tra-
jectory of one developmental process. This up and down can
either be treated as unsystematic error as it is often done in
latent growth modeling when researchers assume some func-
tional (e.g., linear) growth process over time and discount
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Figure 10

Temporal dynamics of fluctuations in maths and language
performance, for the multiple time-scale model with direc-
tional effects, after accounting for correlated system noise.
95% confidence intervals are shaded. At time zero, the sec-
ond process in the title receives a perturbation of 1.00, while
the first process receives the amount of perturbation expected
according to the system noise correlation. Plots then show
how the perturbation propagates through the first process.
This order relates to standard row, column indexing for ma-
trices and matches the temporal effects matrix.

deviations from the respective function into the error part of
the model. A more nuanced approach to capture this type
of dynamics is provided by introducing the distinction be-
tween states and traits (e.g., Steyer et al., 1999) and by using
respective statistical models to distinguish both from error
(e.g., Eid et al., 2017). It goes without saying that repeated
measurements are necessary to empirically capture dynamics
even in this most simple interpretation.

The notion of dynamics can also be used to paraphrase
the acceleration or deceleration of a developmental process.
Such changes of pace can either occur when a process is self-
reinforcing or self-weakening or when there are endogenous
(e.g., maturation) or exogenous (e.g., intervention program)
factors that influence it. Technically speaking, such dynam-
ics can be described in terms of either non-linear parameter-
izations of a latent growth model or by inspecting the deriva-
tives of a growth function. Repeated measurements with
a minimum number of measurement occasions (e.g., at the
very least least three for a saturated quadratic growth model)
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Table 2

’Age moderation effects for the multiple time-scale model
with directional effects model.

Est. SD 2.5% 97.5%

T0m_language 0.05 0.01 0.04 0.07
T0m_maths 0.07 0.01 0.05 0.09
T0m_cint_language 0.01 0.00 0.00 0.02
T0m_cint_maths 0.04 0.01 0.03 0.04
lambda_dsif 0.00 0.01 -0.01 0.01
lambda_mgfd 0.00 0.01 -0.02 0.02
lambda_mzuv -0.02 0.01 -0.03 0.00
drift_language 0.01 0.02 -0.03 0.04
drift_maths -0.05 0.02 -0.08 -0.03
drift_dynlanguage 0.45 0.37 -0.29 1.15
drift_dynlanguage_dynmaths -1.94 0.41 -2.75 -1.17
drift_dynmaths_dynlanguage -0.34 0.16 -0.66 -0.04
drift_dynmaths -1.95 0.44 -2.85 -1.08
diff_dynlanguage 0.08 0.03 0.03 0.14
diff_dynmaths_dynlanguage 0.03 0.02 -0.01 0.07
diff_dynmaths 0.26 0.04 0.19 0.34
mvardles -0.01 0.00 -0.01 0.00
mvardsif -0.02 0.00 -0.03 -0.02
mvarmfur -0.04 0.00 -0.04 -0.03
mvarmgfd -0.03 0.00 -0.04 -0.02
mvarmzuv -0.03 0.00 -0.03 -0.02
mm_dsif 0.03 0.00 0.02 0.03
mm_mgfd 0.01 0.00 0.00 0.01
mm_mzuv 0.04 0.00 0.03 0.04
T0var_language 0.00 0.01 -0.02 0.01
T0var_maths_language -0.01 0.01 -0.03 0.01
T0var_maths -0.01 0.01 -0.02 0.01
T0var_cint_language_language 0.02 0.03 -0.04 0.08
T0var_cint_language_maths 0.01 0.03 -0.05 0.07
T0var_cint_language 0.02 0.01 -0.01 0.04
T0var_cint_maths_language 0.11 0.03 0.05 0.16
T0var_cint_maths_maths 0.19 0.03 0.12 0.25
T0var_cint_maths_cint_language -0.03 0.04 -0.10 0.04
T0var_cint_maths 0.03 0.01 0.01 0.06

are a necessary prerequisite for investigating this kind of dy-
namics.

A third meaning of the notion of dynamics emerges when
referring to multiple developmental processes occurring at
the same time. Related to this notion is the conceptualization
of development as being multidimensional and multidirec-
tional (e.g., Baltes, 1987). In other words, growth or decline
may occur in different domains of functioning (e.g., physical
and cognitive) or within different areas of the same domain
(e.g., competence development in language and mathemat-
ics) and the different domains or areas change at a different
pace or even in different directions. This understanding of
dynamics requires multivariate study designs above the al-

ready mentioned prerequisite of longitudinal data collection.
Fourth, dynamics can be understood from a developmen-

tal systems perspective as the reciprocal relations between
two or more developmental processes. These processes may
be situated at the same level of functioning or comprise dif-
ferent levels. Researchers having this understanding of dy-
namics may want to investigate the repercussions of changes
in one developmental process on changes in another one.
Notably, understanding dynamics from this perspective typ-
ically includes all the other meaning outlined above. Long-
term and short-term fluctuations on different variables that
change over time in terms of pace and direction, that influ-
ence each other and that are subject to influence by other
processes and variables, is how developmental systems can
be conceptualized on a very abstract level.

In the present paper, we have put forward a perspective
on the concept of dynamics that differs from the ones just
mentioned not in the sense that it adds another layer to the
complexity of the subject matter (because the fourth perspec-
tive mentioned already is the most complex one that can be
conceived). Our perspective rather mathematically formal-
izes the aspects mentioned, in a framework that may reduce
the sometimes imprecise use of the term “dynamics” in de-
velopmental and educational literature. We have applied this
formalization to a specific substantive problem concerning
competence development in educational settings. By doing
so, we have demonstrated a viable approach to formalizing
theory, adding some level of precision and quantification to
research in this domain of dynamics and change.

Limitations

While the Mindsteps online-learning data are wonder-
fully rich in some dimensions, allowing scope for address-
ing questions of short-term change in educational domains,
the unsurprisingly large amount of measurement uncertainty,
as well as the relatively short observational period for most
students (median age range is 1.73 years), does somewhat
hinder the endeavour to distinguish long term trends from
genuine short term variation. Another year or two of the
Mindsteps system running will likely offer more opportu-
nities. The lack of covariates such as working memory also
means that while we could address some questions regarding
relations between domains, questions as to the cause of com-
monalities, or change in such commonalities, were unable to
be addressed.

Likely contributing somewhat to the measurement uncer-
tainty is the fact that the data are from a ‘low stakes’ environ-
ment, meaning that there is little incentive for students to per-
form, ensuring that each score will surely be influenced by
the students motivational level at the time of test taking. This
aspect may have led to the high between domain correlations
also. An approach to calculating the ability scores that takes
into account response times and other contextual information



18 DRIVER AND TOMASIK

about the assessment situation (such in-class mandatory as-
sessments vs. free practicing at home) may help in future to
somewhat disentangle the motivational aspects.

From a modeling perspective, the two-step approach, in
which ability estimates for each occasion were first gener-
ated from raw data, is inevitably not ideal, but at present nec-
essary for computational reasons. While we believe that in-
cluding the age-moderated measurement model should have
minimised the cost of such a two-step approach, we are in-
vestigating possibilities for combining both steps.

One direction that was not addressed here but would be of
substantial interest to the online learning community, would
be to include specific effects of each assessment session.
That is, explicitly acknowledging that the assessment session
is not purely a measurement but should have some incremen-
tal benefit on the students performance. The ctsem frame-
work offers an obvious approach to this in terms of including
exogenous time-varying covariates as input effects, discussed
in detail in Driver and Voelkle (2018b).

Conclusion

Probably the most striking empirical result from this work
is the high correlation between short term fluctuations in per-
formance of maths and language. Unfortunately, there are a
variety of possible reasons (and hence explanations) for this
high correlation that will take further research to disentangle
– is it an artifact of our low-stakes measurement procedure
or measurement model, or perhaps genuine fluctuations in a
common cause like motivation? With respect to the three
theories relating maths and language considered, the only
directional results we have speak against the medium func-
tion hypothesis () in which language facilitates mathematics
performance, as our results suggests that an upwards fluc-
tuation in language is followed by declines (or faster dissi-
pation of gains) in maths. The high correlation in system
noise between maths and language would seem to support
the thinking-function hypothesis (), at least to the extent that
one is comfortable assuming that the relatively short term
fluctuations in performance addressed here are analogous to
the sources of longer-term growth. Although this high corre-
lation in system noise would seem to speak against the idea
that learning of mathematics or language draws potential re-
sources away from learning the other, the fact that cross-
effects in both directions became more negative with age,
when students may struggle more with time pressure and
specialisation, does fit nicely with the ideas of competition
discussed by ().

In terms of the modeling framework put forward here,
while it is certainly not the only approach to considering
such questions, the flexibility of combining stochastic dif-
ferential equations with measurement models and individual
differences does offer quite some opportunities. The basics
of the models discussed in this paper can easily be extended

using ctsem or other software to include additional latent
processes (cognitive performance such as working memory
would be invaluable) as well as more sophisticated dynamics
and measurement as needed. The cost of such opportuni-
ties as offered in this framework is sometimes found in un-
expected dependencies in parameterisation, some of which
we have discussed and explained in the hopes of mitigat-
ing problems. However, given that the parameterisation em-
ployed here is, arguably, closer to the way we often think
about developmental processes, such dependencies are not
necessarily just a ‘modeling’ problem but may also reflect
fundamental difficulties at the theoretical level, wherein cer-
tain concepts are difficult to distinguish. By taking the step
to explicitly formalise developmental theories in such a way,
we also take steps to interrogate and expand our own under-
standing of the implications of the theories, even before any
contact with data. We believe this to be a good thing.
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