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Abstract

A general method is introduced in which variables that are products of other variables in

the context of a structural equation model (SEM) can be decomposed into the sources of

variance due to the multiplicands. The result is a new category of SEM which we call a

Products of Variables Model (PoV). Some useful and practical features of PoV models

include estimation of interactions between latent variables, latent variable moderators,

manifest moderators with missing values, and manifest or latent squared terms. Expected

means and covariances are analytically derived for a simple product of two variables and it

is shown that the method reproduces previously published results for this special case. It is

shown algebraically that using centered multiplicands results in an unidentified model, but

if the multiplicands have non-zero means, the result is identified. The method has been

implemented in OpenMx and Ωnyx and is applied in five extensive simulations.
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Products of Variables in Structural Equation Models

Introduction1

The expected covariance matrix of a Structural Equation Model (SEM) which is2

composed of a linear combination of variables has long been known (Wright, 1921) as well3

as its equivalence to a method of path coefficients (Wright, 1934). This equivalence was4

formalized into what is called the Reticular Action Model (RAM) by McArdle and5

McDonald (1984). Although linear combinations of variables are powerful and useful,6

nonlinear models have become increasingly important as latent interaction models, latent7

moderation models, and nonlinear dynamical systems models have become necessary in the8

current data-rich research environment.9

When a variable in an SEM is the outcome of the product of two variables and at10

least one of the product terms is a manifest variable, there are a variety of methods that11

can be used to estimate coefficients in the SEM (e.g., Mehta & Neale, 2005; Neale, 1998).12

But when both of the product terms are latent, the problem becomes more difficult.13

Methods have been proposed that require nonlinear constraints on measurement models14

(the product indicant technique, Kenny & Judd, 1984), approximating non-normal15

distributions using mixture distributions (the latent moderated structure technique, Klein16

& Moosbrugger, 2000; Moosbrugger, Schermelleh-Engel, & Klein, 1997), multiple group17

approaches and estimating latent scores so that they can be dealt with as manifest18

variables (Schumacker, 2002), and variations on unconstrained approaches (unconstrained19

and quasi-maximum likelihood techniques, Marsh, Wen, & Hau, 2004; Marsh et al., 2007),20

the approach proposed and elaborated by Wall and Amemiya (Wall & Amemiya, 2001,21

2003), and semiparametric approaches introduced by Bauer, (Bauer, 2005; Bauer &22

Hussong, 2009). This is only a small sample of the large literature on nonlinear SEM, but23

most of these methods apply only in limited cases or are difficult to implement in current24

SEM software.25

In the current article we take a different approach and present a novel method for the26
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decomposition and estimation of the variance and covariance of products of variables in1

SEM models specified in RAM notation. The approach presented here makes the2

assumption that the non-normality of a variable constructed as the product of other3

variables can be completely accounted for if a model can account for all sources of variance4

that are included in the product and that those sources of variance are multivariate5

normally distributed. The method is currently implemented in OpenMx (Neale et al.,6

2016) and Ωnyx (Oertzen, Brandmaier, & Tsang, 2015) and requires only a one line change7

in the R model script.8

We begin our argument by providing an extension to RAM path diagrams (see Boker9

& McArdle, 2005, for an introduction to RAM matrices and path diagrams) in order to10

show how the specification of these models can be a minimal change from current user11

interfaces. By adding one new node to the pallette of RAM path diagrams, we can add12

products of variables into existing SEM models. We hope that authors of other SEM13

packages will find that this method is straightforward to implement and has many14

advantages for end users.15

To start, consider the construction of a linear combination: estimated coefficients are

constants that are multiplied by variables and then all of these products are summed

together and assigned to an outcome variable. For instance, a simple bivariate regression

using mean centered multivariate normal variables can be written as,

zi = b1xi + b2yi + ei (1)

where xi and yi are the predictor variables and ei is the residual at each row index i, and16

b1, b2, and 1 are constants. If the variance of x, y, and e are Vx, Vy, and Ve, respectively17

and the covariance between x and y is Cxy, a RAM path diagram isomorphic to this18

bivariate regression can be drawn as in Figure 1-a. Compare Equation 1 with the path19

diagram and note that two things are happening when the three one-headed arrows attach20

to the box representing the manifest variable z. In the equation, b1xi, b2yi, and ei are first21

summed. Second, the result of that sum is assigned to the variable zi. In the equation,22
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summation is represented by one symbol, “+”, and assignment is represented by another1

symbol, “=”. The path diagram fuses together these two symbols from the equation. This2

is not a problem as long as only linear combinations are used. In that case, summation and3

assignment are always used together. However, if one wishes to use an n-ary1 operator4

other than summation, the assignment operator and the n-ary operator must be5

disambiguated in the path diagram.

a b

x y

z

Vx Vy

e

1

Ve

Cxy

b2b1

x y

z

b1 b2

Vx Vy

e1

Ve
1

Cxy

Figure 1 . Two equivalent path diagrams of the bivariate regression in Equation 1. (a) Standard

RAM path diagram of a bivariate regression. (b) Equivalent path diagram where the n-ary

operator addition, represented by ⊕, is disambiguated from the assignment operator.

6

In Figure 1-b, a new n-ary operator path diagram node is proposed: the summation7

operator is represented by a plus sign within a circle. If this summation operator is treated8

just like a latent variable with zero unique variance, then the algorithmic application of the9

RAM path tracing rules (Boker, McArdle, & Neale, 2002) will correctly produce the10

components of covariance of the expected covariance matrix of any SEM model that is11

1 Operators often take one or more elements from a set back onto that set. A unary operator maps one

member of a set onto the set; whereas a binary operator maps two elements of a set onto that set, and a

n-ary operator maps n elements onto that set.
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composed solely of linear combinations of variables. Note that in Figure 1-b, the1

summation operator could have been mixed together with standard2

addition-and-assignment while the standard RAM tracing rules would continue to produce3

the correct components of covariance. In many published SEM path diagrams, the plus4

sign in a circle is drawn without the plus sign and is called a “dummy variable” whose only5

purpose is to sum its input arrows and send the sum to any output arrows. We suggest6

that “dummy variables” are actually summation operator nodes since they do not have any7

residual variance.8

Now that the assignment operator has been distinguished from the summation

operator, it is possible to propose a new n-ary operation node: multiplication. Consider the

simplest case, a product of two predictor variables,

zi = b1xiyi + ei , (2)

where the variables x and y are multivariate normal with mean zero and variances Vx, Vy9

and covariance Cxy, and the residual e is independent normally distributed with mean zero10

and variance Ve.11

A path model for Equation 2 is displayed in Figure 2-a, where the n-ary operator12

multiplication is represented by an asterisk within a circle. Although the summation13

operator could be treated as if it were a latent variable with zero residual variance, the14

multiplication operator cannot, as will be demonstrated below. Thus, we will need to15

specify that an n-ary operator is a fourth type of node in a path diagram: i) squares16

represent manifest variables; ii) circles represent latent variables; iii) triangles represent17

constants for means and intercepts; and iv) n-ary operators are represented by a small18

circle surrounding the selected operator symbol. This distinction is necessary for two19

reasons that will be described in more detail later in the article: different n-ary operators20

have different identity operations and also trigger different path tracing rules.21

Diagramming the problem in this way has numerous advantages. Since scalar22

multiplication is commutative, neither the vector x nor y has a privileged place in the23
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x y

z

1 1

Vx Vy

e

1

Ve

b1

Cxy

x y

z

1 1

b1

w1 w2 w3

w4

1

1 1 1

Ve1/2

(Cxy)1/2
(Vx - Cxy)1/2 (Vy - Cxy)1/2

 (Cxy)1/2

a b

Figure 2 . Path diagrams of a product of two variables. The asterisk surrounded by a circle

represents the product of the variables connected to it by incoming arrows. (a) Mean-centered

variables with a single product term. (b) Equivalent path diagram with variances sources

isolated to be independent normally distributed variables with mean zero and variance one.

multiplication, just as one would expect algebraically. This is not explicit in some1

diagrammatic representations for moderation where a moderating variable is singled out.2

This might be perceived as just a philosophical difference. However, placing both3

multiplicands of a commutative binary operation on equal visual footing clarifies that4

moderation is just interaction without a direct effect of the moderating variable and5

emphasizes that the SEM network of variables can be perturbed at either multiplicand6

with an equivalent downstream effect. In addition, by diagramming the model in this way,7

it sets up how the user interface for specifying SEM models that include products of8

variables can be implemented as a minimal change from current SEM conventions.9
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Variance of the Product of Two Variables1

Given two vectors x and y, each with N elements, Goodman (1960) first derived the2

variance of the product of two variables and showed that this was an unbiased estimator. If3

∆x = x − µ(x) and ∆y = x − µ(x), the exact variance is given by4

var(xy) = cov(∆x2, ∆y2) + var(x)var(y) + µ(x)2var(y) + µ(y)2var(x) +

(µ(x)µ(y))2 + 2µ(x)µ(y)cov(x, y) + 2µ(x)cov(∆x, ∆y2) +

2µ(y)cov(∆x2, ∆y) − cov(x, y)2 . (3)

Bohrnstedt and Goldberger (1969) applied this result to the bivariate normal case and5

showed that the variance of the product, var(xy), can be estimated as (Bohrnstedt &6

Marwell, 1978, Equation 15)7

var(xy) = µ(x)2var(y) + µ(y)2var(x) + 2µ(x)µ(y)cov(x, y) +

var(x)var(y) + cov(x, y)2 . (4)

Bohrnstedt and Marwell (1978) also derived reliability for this estimator when the observed8

product variable included a normally distributed error term.9

Now consider the regression equation10

zi = b1xiyi + ei (5)

where x and y are mean centered, multivariate normal, and the vector of residuals, e, is11

mean centered, normally distributed, and independent of the predictor variables x and y.12

This may be drawn as a path diagram as shown in Figure 2-a. A new set of tracing rules13

will be required when this product symbol is used. However, note that the total variance at14

the product symbol can be estimated from Equation 6. The downstream contribution of15

this variance to z will be scaled by b2
1. We can thus linearly decompose the variance of z16

into terms due to the contribution of the error term y and the product of x and y such that17

var(z) = b2
1[µ(x)2var(y) + µ(y)2var(x) + 2µ(x)µ(y)cov(x, y) +

var(x)var(y) + cov(x, y)2] + var(e) . (6)
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When µ(x) = µ(y) = 0, Equation 6 simplifies to1

var(z) = b2
1[var(x)var(y) + cov(x, y)2] + var(e) . (7)

We next derive a general estimator for the variance decomposition of products of2

variables and apply it to the example problem in Equation 7 in order to demonstrate how3

the known estimator for the variance of the product of two variables is a special case result4

of the general estimator. This method relies on the model in the equivalent path diagram5

shown in Figure 2-b.6

Expectations by Method of Moments for Products of Variables7

Suppose we are given an SEM as a path diagram in which all nodes with incoming8

edges are additionally labeled as sum or product of their incoming edges. For the time9

being, we will assume that the graph is acyclic (recursive). It may be that the results can10

be extended to cases with cycles as well, provided that for all node values, an infinite series11

calculated along each cycle converges.12

We are interested in all moments of the vector of all observed variables. The following13

describes how those can be computed analytically assuming a fixed set of parameters. The14

main idea is to represent the variance sources of the SEM as independent15

standard-normally distributed sources and then represent all variables as polynomial over16

these sources. Then, all moments become expectations of polynomials, which in turn are17

sums of monomials. In this way, the computation of the moments is reduced to computing18

the expectation of a monomial of independently standard-normally distributed variables–a19

problem that has a known computational solution.20

At the highest level, the algorithm proceeds in three steps,21

1. All variables in the SEM are represented by a linear combination of some22

independently normally distributed variables w1, ..., wn with known variances such23

that the covariance matrix of all variables is the symmetrical matrix S from the RAM24

matrix formulation.25
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2. Progressing top-down in the asymmetrical graph of the path diagram, polynomial1

representations of all variables in the w1, ..., wn are computed.2

3. Polynomial representations of all requested moments are computed and evaluated3

into numbers.4

Suppose that we have an SEM represented in standard RAM notation such that the,

the model-expected covariance matrix of the observed variables, Cxx is calculated as

Cxx = F(I − A)−1S((I − A)−1)T FT (8)

where for all variables, both latent and manifest, A is the matrix of regression coefficients,5

S is the matrix of variances and covariances, and I is the identity matrix. The matrix F6

filters out the latent variables so that Cxx contains only the model-expected covariance7

matrix of the observed variables.8

In order to transform the model into a model with only independent variables, we

will operate on S, the matrix of model variances and covariances both latent and manifest.

We first compute the Eigenvalue decomposition of S,

S = QDQT (9)

Let W = w1, ..., wn be independently normally distributed variables with zero mean and

variances given by the diagonal entries of D, the Eigenvalues of S, where n is the number

of total variables in the SEM. Then QW is an n-dimensional random variable with zero

mean and covariance

V(QW ) = E(Q
√

D
√

DQT ) = S (10)

So each variable can be expressed by a linear combination of the W variables with the9

corresponding row of Q as weights, plus a constant term that gives the mean of that10

variable.11

Using only product and sum operators, every variable in the model (both observed

and latent) xi can now be represented as a polynomial of the original observed variables.
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However, the mathematics of expectations are greatly simplified by using multivariate

polynomials of independent (i.e., uncorrelated Gaussian) variables. Thus, we express each

variable as a multivariate polynomial, fi, in the independently normally distributed

variables w1, ..., wn. If there are m variables in total, the k = (k1, ..., km)-th moment of the

joint distribution of the vector X = (x1, ..., xm) is

Mk(X) = E(
m∏

i=1
fki

i ) (11)

where the expectation is taken with respect to the roots wi. In particular, Mk(X) is the

expected value of a polynomial in wi, where the coefficients are a combination of the

regression weights in the SEM. Let this polynomial be g = ∏m
i=1 fki

i . This polynomial is a

sum of monomials in wi. Since the expectation is linear, we can separate the computation

of the expectation to the single monomials, and thus reduce our problem to computing the

expectation of a monomial of independently normally distributed variables, i.e., an

expectation of the form

E (we1
1 · · · wen

n ) (12)

which is given by the product of the expectations of the single variables with their

exponents,

E (we1
1 · · · wen

n ) =
n∏

i=1
E(wei

i ) (13)

For completeness sake, we give a quick proof:1

Theorem 1.

E (W e1
1 · · · W en

n ) =
n∏

i=1
E(W ei

i ) (14)
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Proof.

E (W e1
1 · · · W en

n ) =
∫ ∞

−∞
we1

1 · · · wen
n pdf(w1) · · · pdf(wn)dw1 . . . dwn

=
∫ ∞

−∞

(∫ ∞

−∞
we1

1 pdf(w1)dw
)

we2
2 · · · wen

n pdf(w2) · · · pdf(wn)dw2 . . . dwn

= E(W e1
1 )

∫ ∞

−∞
we2

2 · · · wen
n pdf(w2) · · · pdf(wn)dw2 . . . dwn

...

=
n∏

i=1
E(W ei

i )

1

Thus, we are left with computing the higher-order moments of independent

standard-normally distributed variables with zero mean and unit variance,

E(W e) , (15)

where e is a positive integer. These moments are known (e.g., Papoulis & Pillai, 2002) to be

E(W e) =


0 if e is odd

V(W )e/2 ∏ e−2
2

i=1 (2i + 1) if e is even

 (16)

Example 1: Bivariate Product of Variables Regression2

As an example, we will transform the SEM model in Figure 2-a into the equivalent3

SEM model shown in Figure 2-b such that all sources of variance and covariances are4

independent, normally distributed variables with mean zero and unit variance. The first5

step is to remove all covariances between variables by replacing them with unit variance6

sources. Thus, we add the latent variable w2 and replace the covariance path with the7

value Cxy in Figure 2-a with regression paths from w2 to x and y with values C
1
2
xy. Thus,8

the covariance between x and y can be calculated as C
1
2
xy · 1 · C

1
2
xy = Cxy. However, now the9

variances for x and y become residual variances that must be reduced by the total effect of10

w2 which is C
1
2
xy · 1 · C

1
2
xy = Cxy. So, the residual variance of x is Vx − Cxy and the residual11

variance of y is Vy − Cxy.12
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We can now replace the variance terms in Figure 2-a with the independent normally1

distributed unit variance variables w1, w3, and w4 and regression paths to x, y, and e2

respectively. The regression weights for these variables become the square root of the3

residual variances for x, y, and e as shown in Figure 2-b. The ith variable in the path4

diagram in Figure 2-b can now be represented as a polynomial fi of what we will refer to as5

root nodes, i.e., the independent, normally distributed variables w1, . . . , wn with zero mean6

and unit variance. This transformation of an SEM model into polynomials of root nodes7

can be applied to any SEM that can be represented as a RAM model, including models8

that have n-ary operators such as introduced here. We will call models that conform to9

RAM conventions along with addition and product n-ary operators Products of Variables10

(PoV) models.11

Returning to the example in Figure 2-b, we can compute the moments, including all12

joint moments of any variable or pair of variables. Thus, we can decompose the variance of13

the product variable z = b1xy + e into components of variance and covariance of the other14

variables in the SEM as follows:15

V(z) = E(zz) (17)

= E((b1xy + e)(b1xy + e)) (18)

= E(b2
1x

2y2 + 2b1xye + e2) . (19)

We next transform the variables x, y, and e into their monomial equivalents,16

x = w1(Vx − Cxy) 1
2 + w2(Cxy) 1

2 (20)

y = w3(Vy − Cxy) 1
2 + w2(Cxy) 1

2 (21)

e = w4(Ve)
1
2 . (22)

Next we substitute Equations 20, 21 and 22 into Equation 19 and then expand, collect, and17

cancel terms to find that18

V(z) = b2
1(VxVy + C2

xy) + Ve , (23)
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which is the result in Equation 7 derived from the results of Goodman (Goodman, 1960)1

and Bohrnstedt and colleagues (Bohrnstedt & Marwell, 1978). The complete derivation of2

this result is lengthy but is included in the supplemental material for this article.3

Following the same logic, we can derive the expected covariance matrix of the model4

z = b1xy + e as5

E(Σ) =


Vx Cxy 0

Cxy Vy 0

0 0 b2
1(VxVy + C2

xy) + Ve

 (24)

What becomes apparent here is that this model is unidentified, that is to say, b1 and Ve6

only appear in one cell of the matrix and in that cell they form two parts of a sum. Thus, a7

smaller b1 can be compensated by a larger Ve and vice versa. In addition, since b1 only8

appears as a squared term, it is unidentified with respect to its sign. Thus the maximum9

likelihood solution to this problem is not a single point, but lies on a line where all values10

on that line are equally likely.11

When pre-multiplying two variables and then adding them into a regression equation12

as a way of estimating an interaction, one is taught to always subtract the mean of each13

variable prior to multiplying them together. This preprocessing is done in order to remove14

spurious covariances between the multiplicands and the outcome. But in the case of the15

current PoV method of estimating the effects of products, we can account for these16

covariances and they provide a way to resolve the underidentification of product coefficient17

and error term. If we do not remove the means prior to entering the multiplicands into the18

model and then estimate the means as part of a full information maximum likelihood19

solution, the model becomes fully identified.20

When the expected means and covariances are derived for the same model21

z = b1xy + e we find22
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E(Σ) =



Vx Cxy b1(Vxµy+

Cxyµx)

Cxy Vy b1(Vyµx+

Cxyµy)

b2
1(Vxµ2

y + Vyµ2
x+

b1(Vxµy+ b1(Vyµx+ VxVy + C2
xy+

Cxyµx) Cxy)µy Cxy(µy + µx)2−

µ2
xµ2

y) + V(e)



(25)

E(M) =
[

µx µy b1(Cxy + µxµy)
]

(26)

Again, the full derivation of this result can be found in the supplemental materials.1

Simulations2

We ran a series of simulations in order to test the performance of the implementation3

of the PoV method in OpenMx on five common use cases. The only new syntax required in4

scripting a PoV model is that one must add a line declaring productVars= with the5

names of any product nodes shown as a circle around an asterisk in the following path6

diagrams. Then one may use the standard mxPath() statements to specify the paths7

between named variables. All R scripts for each of the example models simulated and8

estimated below are included in the supplemental materials.9

Simulation One: Manifest Variable Moderation10

A moderation model with only observed variables as shown in Figure 3 was simulated11

where the parameters took on one of the values b1 = {−0.5, 0.5}, b2 = {−0.5, 0.5},12

µx = {−0.5, 0, 0.5}, µy = {−0.5, 0, 0.5}, Cxy = {−1, 0, 1}, Ve = {0.2, 0.7, 1.2},13
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Vx = Vy = 3.0, resulting in 2 × 2 × 3 × 3 × 3 × 3 = 324 conditions. Each condition was1

replicated 30 times, resulting in a total of 9,720 data sets. Prior to simulating the data for2

N = 1000 simulated participants, a normally distributed random number (µ = 0, σ = 0.1)3

was added to each parameter to better cover the parameter space.4

Figure 3 . Path diagram and simulation outcomes for a bivariate moderation model. For the

scatter plots, the color of the plotted point corresponds to the error variance condition. In the

plot for b1, note that there are some estimated values that have the opposite sign than the

generating values. This occurs when both the mean of x and y are very close to zero and the b1

parameter is underidentified.

The simulation resulted in 99.8% convergence. The estimated parameters from each5

of the 9,720 data sets was compared to the generating coefficients for that data set. Mean6

relative bias was calculated as the signed difference between the generating and estimated7

coefficient divided by the generating coefficient. Mean relative bias for b1 was 0.046 and for8

b2 was < 0.001. Assuming an alpha level of 0.95, coverage as calculated by 1.96 time the9

parameter standard error was 0.974 for b1 and was 0.958 for b2. Thus, standard errors were10

correct for the direct effect, b2, but were conservative for the product effect, b1. The model11

was estimated on the same 9,720 data sets but with b1 fixed to zero and the likelihood ratio12
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test was calculated by subtracting the minus two log likelihood of the full model from the1

model with the parameter set to zero. Again assuming an alpha level of 0.95 and a χ2 test2

with one degree of freedom, this resulted in a type I error rate of 0.0494. Thus, although3

the standard error for the product direct effect is conservative, the likelihood ratio test4

performs exactly as expected.5

Simulation Two: Manifest Variable Moderation with Missing Values6

One of the problems with current methods used to estimate moderation is that they7

are not able to account for missing data. In order to test whether the PoV method could8

account for missingness in the same way as full information maximum likelihood, we re-ran9

Simulation One where we substituted a random selection of 20% of the values of y and a10

separate random selection of the values of z with NA. Thus, this fits with the definition of11

values of y and z being missing completely at random. Figure 4 presents the results of this12

simulation.13

Figure 4 . Path diagram and simulation outcomes for a bivariate moderation model where 20%

of y and z are missing completely at random.

This simulation resulted in 97.3% convergence. Mean relative bias for b1 was 0.01514

and for b2 was < 0.001. Assuming an alpha level of 0.95, coverage as calculated by 1.9615



PRODUCTS OF VARIABLES 19

time the parameter standard error was 0.969 for b1 and was 0.950 for b2. Clearly, full1

information maximum likelihood is working as expected when data are missing completely2

at random.3

Missingness that can be accounted for by the model, the case of missing at random,4

was also tested in simulation for this model. Here, missingness in y was set to be5

conditional on the value of x. When x was more than one standard deviation above its6

mean, y had a 50% chance of being missing. In addition, z had a 20% chance of being7

missing, but not conditional on any part of the model. Thus y was missing at random and8

z was missing completely at random. This simulation resulted in 97.4% convergence. Mean9

relative bias for b1 was 0.049 and for b2 was 0.003. Assuming an alpha level of 0.95,10

coverage as calculated by 1.96 time the parameter standard error was 0.811 for b1 and was11

0.855 for b2. Thus, the missing at random case increased bias by a very small amount, but12

decreased coverage considerably in both the direct effect and the product effect.13

Simulation Three: Latent Variable Moderation14

A moderation model with a latent variable moderating a second latent variable and a15

latent outcome as shown in Figure 5 was simulated where the parameters took on one of16

the values b1 = {−0.5, 0, 0.5}, b6 = {−0.5, 0, 0.5}, µx = {−0.5, 0.5}, µy = {−0.5, 0.5},17

Cxy = {−1, 0, 1}, and Ve = {0.1, 0.6, 1.1}. The variance of the predictor latent variables was18

set to Vx = Vy = 3.0 and the residual variance of the outcome latent variable was set to19

Vz = Ve. The loadings for the latent variables were set to b2 = bx2 = by2 = {−.05, 0.5} and20

b3 = bx3 = by3 = {−.05, 0.5} and the unique variances were all set to the current value of21

Ve. This resulted in 3 × 3 × 2 × 2 × 3 × 3 × 2 × 2 = 1296 conditions. Each condition was22

replicated 8 times, resulting in a total of 10,368 data sets, each with N = 1, 000 simulated23

participants. Prior to simulating the data, a normally distributed random number (µ = 0,24

σ = 0.1) was added to each parameter to better cover the parameter space.25

The simulation resulted in 99.9% convergence. Mean relative bias for b1 was -0.09226
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Figure 5 . Path diagram and simulation outcomes for a bivariate latent moderation model.

and for b6 was < 0.001. Assuming an alpha level of 0.95, coverage as calculated by 1.961

time the parameter standard error was 0.975 for b1 and was 0.958 for b6. Thus, standard2

errors were correct for the direct effect, b6, but were conservative for the product effect, b1.3

The model was estimated on the same 9,720 data sets but with b1 fixed to zero and the4

likelihood ratio test was calculated by subtracting the minus two log likelihood of the full5

model from the model with the parameter set to zero. Again assuming an alpha level of6

0.95 and a χ2 test with one degree of freedom, this resulted in a type I error rate of 0.0221.7

Thus, both the standard error for the product direct effect and the likelihood ratio test8

were conservative. This was likely due to the fact that in the latent simulation we allowed9

the true product effect b1 to take on values very close to zero.10

Simulation Four: Latent Variable Interaction11

A model with a product of two latent variables and direct effects on a latent outcome12

as shown in Figure 6 was simulated where the parameters took on one of the values13

b1 = {−0.5, 0.5}, b6 = {−0.5, 0.5}, b7 = {−0.5, 0.5}, µx = {−0.5, 0.5}, µy = {−0.5, 0.5},14

Cxy = {−1, 0, 1}, and Ve = {0.1, 0.6, 1.1}. The variance of the predictor latent variables was15

set to Vx = Vy = 3.0 and the residual variance of the outcome latent variable was set to16

Vz = Ve. The loadings for the latent variables were set to b2 = bx2 = by2 = {−.05, 0.5} and17
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b3 = bx3 = by3 = {−.05, 0.5} and the unique variances were all set to the current value of1

Ve. This resulted in 2 × 2 × 2 × 2 × 2 × 3 × 3 × 2 × 2 = 1, 152 conditions. Each condition2

was replicated 9 times, resulting in a total of 10,368 data sets, each with N = 1, 0003

simulated participants. Prior to simulating the data, a normally distributed random4

number (µ = 0, σ = 0.1) was added to each parameter to better cover the parameter space.5

Figure 6 . Path diagram and simulation outcomes for a bivariate latent interaction model.

Again we see some sign reversals in b1 due to means of the latent variables being near zero.

The simulation resulted in 98.2% convergence. Mean relative bias for b1 was 0.083,6

for b6 was −0.001 and for b7 was < −0.013. Assuming an alpha level of 0.95, coverage as7

calculated by 1.96 time the parameter standard error was 0.992 for b1, 0.983 for b6 and8

0.984 for b7. Thus, standard errors were conservative for the product effect, b1, and the two9

direct effects, b6 and b7.10

Simulation Five: Squared Predictor Variable11

A model with a predictor variable, x and its square, x2 on a latent outcome as shown12

in Figure 7 was simulated where the parameters took on one of the values b1 = {−0.5, 0.5},13

b2 = {−0.5, 0.5}, b3 = {−0.5, 0.5}, b4 = {−0.5, 0.5}, µx = {−1.0, −0.5, 0, 0.5, 1.0}, and14

Ve = {0.1, 0.35, 0.6, 0.95, 1.1}. The variance of the predictor variable was set to Vx = 3.015

and the residual variance of the outcome latent variable was set to Vz = Ve. The unique16
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variances were all set to the current value of Ve. This resulted in1

2 × 2 × 2 × 2 × 5 × 5 = 400 conditions. Each condition was replicated 25 times, resulting in2

a total of 10,000 data sets, each with N = 1, 000 simulated participants. Prior to3

simulating the data, a normally distributed random number (µ = 0, σ = 0.1 was added to4

each parameter to better cover the parameter space.5

Figure 7 . Path diagram and simulation outcomes for a squared predictor.

The simulation resulted in 99.9% convergence. Mean relative bias for b1 was 0.0086

and for b4 was 0.001. Assuming an alpha level of 0.95, coverage as calculated by 1.96 time7

the parameter standard error was 0.999 for b1 and 0.972 for b4. Thus, standard errors were8

conservative for the product effect, b1, and the direct effect, b4.9

Discussion10

Estimation of SEM models with Products of Variables is a general method that can11

provide unbiased estimates of parameters when predictor variables are normally12

distributed. Coverage of parameters of products is higher than expected when calculated13

using standard error estimates, but the likelihood ratio test appears to perform as expected.14

The primary advantage of the PoV method is in its generality. Most alternative15

methods for estimating parameters of SEM models containing products focus on special16
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cases and involve complicated constraints or estimation of parameters with non-normally1

distributed variability. The PoV method is easy to use as it has been implemented in2

OpenMx and Ωnyx. The method can handle interaction and moderator variables that are3

either latent or have missingness. We expect that there are many more models other than4

the obvious moderation and interaction models for which PoV estimation can be used.5

Interaction versus Moderation6

The use of the product calculation node in path diagrams has clarified for us the7

difference between interaction between variables and moderation of one variable by8

another. Examine the difference between Figure 5 and Figure 6. These two diagrams are9

exactly the same other than the direct effect between y and z that appears in the10

interaction diagram, Figure 6, but does not appear in the moderation diagram, Figure 5.11

Thus, the only thing that distinguishes a moderating variable from the other multiplicand12

is its lack of a direct effect on the outcome. It becomes clear that when one has a product13

of two variables, say z = x · y in a model, either x or y or both may be considered to be a14

moderator depending on presence or absence of a direct effect of x or y on z.15

The reader may wonder why we did not use a classic interaction model with direct16

effects as an example model to illustrate the procedure. Figure 8 illustrates why this model17

is unidentified using the current method. The reason why it is unidentified as a structural18

model predicting covariances is apparent by counting seven free parameters while there are19

only six degrees of freedom in a 3 × 3 covariance matrix. One must watch for local20

underidentification in models that include products of variables. The overall model may be21

globally identified as determined by counting parameters and degrees of freedom in the22

covariance matrix, but there still be areas of local underidentification resulting in sign23

reversals such as those seen in simulations 1 and 4.24

It may be more difficult to see why identification works when one premultiplies two25

manifest variables and creates a third variable for an interaction model. In this case there26
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Figure 8 . A manifest variable interaction model with both direct effects has more parameters

than statistics and thus is unidentified.

is a 4 × 4 covariance matrix and so there are not negative degrees of freedom. But why is1

the 4 × 4 covariance matrix of full rank? This is due to the contributions of higher order2

moments introduced by the multiplication formed at the individual data rows when the3

premultiplication is performed. This model is identified because a product of two normal4

distributions is not itself normal.5

Product Calculation Nodes and the Identity Function6

One feature of PoV is its reliance on a product node extension of RAM model7

matrices. Although OpenMx has chosen to call this a ProductVar, it is not really a8

variable. As such it does not have a mean or a variance, it is simply a node that indicates9

the multiplication operation. Thus although a product node occupies a row and column in10

the RAM matrices, OpenMx prevents the user from connecting a variance, covariance, or11

mean path to this calculation node. However, if one examines the RAM matrices, it12

becomes apparent that there is an automatically specified mean path to every product13

node with a fixed value of 1.0. Why is that?14
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In RAM, removing a path and setting a path to zero are identical operations.1

However, this is not the case in PoV. Note that the identity function for addition is to add2

zero whereas the identity function for multiplication is multiply by one. If there is no3

desired effect between predictor and outcome in a normal SEM, a regression path from the4

predictor to the outcome is set to zero. However, if a regression path pointing from one5

multiplicand to a multiplication operator symbol is set to zero in an PoV diagram, then the6

other multiplicand is multiplied by zero. This may not be the intention of the modeler.7

When one wishes to use a likelihood ratio to test the difference between a model with and8

without a product, we recommend to use the outgoing path from the product node as the9

path to set to zero for the one degree of freedom minus two log likelihood comparison.10

Assumptions and Limitations11

The algorithm in this article makes the strong assumption that the variables in an12

PoV allow the transformation of the model into an equivalent model in which all variance13

sources are represented as linear combinations of independent normally distributed14

standardized variables. This is a relaxation of the usual SEM assumption of multivariate15

normality. The outcome of a product of variables will not be normally distributed.16

However, the PoV assumption is that the non-normality of a product outcome variable can17

be completely accounted by the non-normality generated by multiplying multivariate18

normal variance sources. Thus, all variables that are not outcome variables must be19

multivariate normal. To be explicit, this means that all residuals must be normally20

distributed, including the residuals of variables that are outcomes of products of variables.21

This article presents a novel addition to the already complex infrastructure of22

structural equation modeling. We acknowledge that there may be special cases that need23

to be tested before products of variables models can be recommended in those cases. We24

recommend using simulation and either OpenMx or Ωnyx to verify models that include25

PoV structures that go beyond the common use cases presented here.26
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For instance, since the PoV relies on normality of predictor variables, ordinal1

predictors might not be able to be used as a multiplicand. If one has ordinal manifest2

variables that one wishes to use in a product, we recommend a method such as OpenMx3

definition variables (Neale, 1998; Neale et al., 2016). In principal, the method for4

estimating a normally distributed latent variable from ordinal indicators as implemented in5

OpenMx should be able to be used to create a latent multiplicand, but we have not yet6

fully tested this case.7

Conclusions8

Products of variables can be included in structural equation models and model9

expectations can be calculated using the methods introduced here. This means that10

products of combinations of manifest and latent variables are now possible to implement in11

standard SEM software in an automated and easy-to-specify way. Three important and12

commonly used models that will immediately benefit from PoV estimation are: i) models13

with interactions between latent variables, ii) latent moderator models, and iii) moderator14

models with missingness in the moderator variable.15

Future work will certainly find novel and interesting uses for the PoV method. One16

case that we have begun to explore is the use of PoV to extract a “factor of paths”,17

creating a latent variable that accounts for the commonality between coefficients that18

include person-specific variance. This could be construed to be a special case of multilevel19

models with random coefficients and thus we may find that PoV estimation may prove20

useful for multilevel models. A second case that we have begun to explore is nonlinear21

dynamical systems models. Differential equations with squared and cubic terms are at the22

heart of dynamical systems that exhibit bifurcation and/or chaotic dynamics. We expect23

that PoV estimation will prove useful in fitting these sorts of models to complex24

physiological and behavioral timeseries.25

We believe that the algorithm presented here represents a paradigm shift for26
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representing theories within the context of structural equation models. We look forward to1

seeing PoV estimation appearing as a feature in software other than OpenMx and Ωnyx2

and with that in mind, we refer SEM software authors to our open source code available on3

GitHub.4
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