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This study compared various exploratory and confirmatory factor methods for recovering factors of cognitive
test-like data. We first note the problems encountered by several widely usedmethods, such as parallel analysis,
minimum average partial procedure, and confirmatory factor analysis, in estimating the number of dimensions
underlying performance on test batteries. We then argue that a new method, Exploratory Graph Analysis
(EGA), canmore accurately uncover underlying dimensions or factors and demonstrate how thismethod outper-
forms the othermethods.Weuse several published data sets to demonstrate the advantages of EGA.Weconclude
that a combination of EGA and confirmatory factor analysis or structural equation modeling may be the ideal in
precisely specifying latent factors and their relations.
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1. Introduction

Discovering dimensions (or factors) underlying human behavior
and cognitive ability is central in psychology and the cognitive sciences.
Factor analysis was developed to uncover the dimensions underlying a
large number of measures of the behaviors or abilities of interest
(Spearman, 1904; Carroll, 1993; Jensen, 1998). However, there is no
agreement yet about themethod of choice for identifying the best num-
ber of dimensions and their relations under various conditions of mea-
surement, sampling of persons, and between dimensions' relations.
Principal component analysis, factor analysis of various types and rota-
tions, and, recently confirmatory factor analysis and structural equation
modeling were advanced to cope with these problems.

Recently, Keith, Caemmerer and Reynolds (2016) showed that both
parallel analysis (PA) and minimum average partial procedure (MAP)
underestimate the number of dimensions in many realistic data condi-
tion, especially when the correlation between factors are high (.70)
and the number of indicators per factor are low. Their results align
with earlier research showing that both PA and MAP work well when
there is a low or moderate correlation between factors, when the sam-
ple size is equal to or N500 and when the factor loadings are frommod-
erate to high (Buja & Eyuboglu, 1992; Crawford et al., 2010; Garrido,
Abad & Ponsoda, 2011; Green, Redell, Thompson & Levy, 2016;
Timmerman & Lorenzo-Seva, 2011; Velicer, Eaton, & Fava, 2000,
Velicer, 1976; Zwick & Velicer, 1986).
demetriou@ucy.ac.cy
Simulation studies point to a relevant issue: PA and MAP fail to un-
cover the correct number of factors in situations approaching real intel-
ligence datasets. Keith et al. (2016) suggested that researchersmust use
confirmatory factor analysis (CFA) guided by a relevant theory, because
CFA was more accurate than other methods in recovering the correct
number of dimensions in their simulation study. To deal with the fact
that exploratory techniques did not correctly recover the number of fac-
tors in realistic data conditions, these authors strongly suggested using
theory to guide the analysis.

Although useful when available, theory, in principle, may suggest
but, cannot specify either the true number of dimensions in an instru-
ment or how items in the instrument may relate to these dimensions.
Obviously, there may be factors in the battery that are ignored or
overlooked by the theory. Thus, CFA may be used to test if the theoret-
ically expected dimensions are present in the data. However, when a
CFA theory-based model fails to fit empirical data, other tools are need-
ed to explore the structure of the instrument as precisely as possible.

We argued above that PA, MAP and other traditional techniques are
not robust enough to estimate the number of factors underlying a given
instrument, when the correlation between factors is high and the num-
ber of variables per factor is low. Thus, new robust techniques are need-
ed. This paper presents a new method, Exploratory Graph Analysis
(EGA; Golino & Epskamp, 2016), that is more powerful than earlier
methods to estimate the number of dimensions in intelligence-like
data. EGA was shown to outperform PA and MAP in conditions where
thesemethods are not accurate: That is, when correlations between fac-
tors are high and the number of items per factor is low (Golino &
Epskamp, 2016). Specifically, EGA is better in estimating the number
of factors in situations which (1) are very close to what we find in real

http://crossmark.crossref.org/dialog/?doi=10.1016/j.intell.2017.02.007&domain=pdf
http://dx.doi.org/10.1016/j.intell.2017.02.007
mailto:ademetriou@ucy.ac.cy
Journal logo
http://dx.doi.org/10.1016/j.intell.2017.02.007
Unlabelled image
http://www.sciencedirect.com/science/journal/01602896
www.elsevier.com/locate/intell


ar1
ar2

ar3

ar4

ar6

ar7

ar8

ar9

a10

a11

a13

ar5

a12

a14

a15

a16

sc4

sc6

sc8

sc9

s10

s11

sc2

sc3

sc7

s12

s13

s14
s15s16

s17

s18

s19

s20

c1

c2

c3

c4

c5

c7

c8

c9

c10

c12

c14

c16

c17

c18

c19

c20

c21

c22

c23

c24

c6

c11

c13
c15

AR

SC

CON

Fig. 1. The theoretical structure of the NIT subtests used in the current study. AR= arithmetical reasoning; SC = sentence completion; CON = concepts.
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intelligence datasets but (2) traditional techniques underestimate the
dimensions involved.

This paper is organized as follows. In the first section, EGA is briefly
presented as part of a new area called network psychometrics (Epskamp,
Maris, Waldorp & Borsboom, 2017). In the second section, EGA is ap-
plied on the datasets simulated by Keith et al., where PA and MAP pre-
sented low accuracy (i.e., high factor correlations, low factor loadings,
and N = 500). Finally, in the third section, EGA is applied in three pre-
viously published datasets (Must & Must, 2013, 2014; Demetriou &
Kazi, 2006; Žebec, Demetriou, & Kotrla-Topić, 2015) to show how this
new technique can guide researchers in their search for the underlying
dimensionality of intelligence like data.

1.1. Exploratory graph analysis: a brief overview

Exploratory Graph Analysis is part of a new area called network psy-
chometrics (see Epskamp et al., 2017), which focuses on the estimation
of undirected networkmodels (i.e. Lauritzen, 1996a, b) to psychological
datasets. This area has been applied in different areas of psychology,
including psychopathology (e.g., Borsboom et al., 2011; Borsboom &
Cramer, 2013; Fried et al., 2015) and developmental psychology
(Kossakowski et al., 2015; van der Maas et al., 2006). In network psy-
chometrics, the nodes represent psychological variables (e.g., test and/
or questionnaire items, psychopathological symptoms, etc.) and the
connection between nodes (i.e., edges) represents statistical relation-
ships to be estimated (Epskamp & Fried, 2016). Thus, there is a funda-
mental distinction between network psychometrics and other types of
networkmodels, inwhich the links between nodes donot need to be es-
timated, such as social networks analysis (Epskamp & Fried, 2016).
When analyzing data generated by psychological instruments, one
may want to know if nodes are connected with each other, forming
clusters standing for underlying latent variables. If a latent variable
model is the true underlying causal model, we would expect indicators
in a network model to form strongly connected clusters for each latent
variable. Network models may be shown to be mathematically equiva-
lent under certain conditions to latent variable models in both binary
(Epskamp et al., 2017) and Gaussian datasets (Chandrasekaran, Parrilo
& Willsky, 2010).
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By defining a cluster as a group of connected nodes regardless of
edge weight, Golino and Epskamp (2016) pointed to a fundamental
rule of network psychometrics: Clusters in network equal latent vari-
ables. This is both an empirical finding (Cramer et al., 2012; Costantini
et al., 2014; Borsboom et al., 2011; Epskamp et al., 2012; van der Maas
et al., 2006) and a mathematical characteristic of networks (Golino &
Epskamp, 2016). Specifically, Golino & Epskamp (2016) demonstrated
the two principles following:

1. If the latent factors are orthogonal to each other, the resulting net-
work model consists of unconnected clusters.

2. Assuming factor loadings and residual variances are reasonably on
the same scale for every item, the off-diagonal blocks of the variance–
covariance matrix will be scaled closer to zero than the diagonal blocks
of the variance–covariance matrix. Hence, the resulting network model
will contain weighted clusters for each factor.

There are several ways to estimate network models. In one of them,
partial correlation coefficients can be used to build networks in which
each edge represents the association between two variables
conditioned on all other variables (Epskamp & Fried, 2016). Epskamp
and Fried (2016) argue that one of the main issues in using partial cor-
relation coefficients to estimate networkmodels is that even when two
variables are conditionally independent, the estimated partial correla-
tion coefficient is not zero due to sampling variation. Thus, partial corre-
lation coefficients can reflect spurious correlations, representing
relationships that are not true in reality (Epskamp & Fried, 2016). Reg-
ularization techniques can be used to deal with spurious connections,
such as the least absolute shrinkage and selection operator (LASSO;
Tibshirani, 1996), one of themost prominentmethods for network esti-
mation on psychological datasets (vanBorkulo et al., 2014; Kossakowski
et al., 2015; Fried et al., 2015). The LASSO technique avoids overfitting
by shrinking the partial correlation coefficients, so small coefficients
are estimated to be exactly zero (Golino & Epskamp, 2016; Epskamp &
Fried, 2016). This indicates conditional independence and facilitates
the interpretability of the network structure, requiring fewer connec-
tions to explain the covariance between variables in a dataset
(Epskamp & Fried, 2016).

Image of Fig. 2
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A new approach to estimate the number of dimensions in psycho-
logical data using network psychometrics was proposed by Golino and
Epskamp (2016). This is Exploratory Graph Analysis (EGA) and it
works as follows. Firstly, it estimates the correlation matrix of the ob-
servable variables; then proceeds to use the LASSO estimation to obtain
the sparse inverse covariancematrix, with the regularization parameter
defined via EBIC over 100 different values. In the last step, the walktrap
algorithm (Pons & Latapy, 2005) is used to find the number of dense
subgraphs of the partial correlation matrix. In EGA, the number of
dense subgraphs identified (i.e., clusters in an undirectedweighted net-
work) equals the number of latent factors in a given dataset. It is impor-
tant to note that EGA is able to both estimate the number of dimensions
underlying the data and clearly show which items belong to each
dimension.

Golino and Epskamp (2016) studied the accuracy of six techniques
to estimate the number of dimensions: (i) very simple structure (VSS;
Revelle & Rocklin, 1979) with complexity one; (ii) minimum average
partial procedure (MAP; Velicer, 1976); (iii) fit of different number of
factors, from 1 to 10, via BIC and via EBIC; (iv) Horn's Parallel Analysis
(PA; Horn, 1965) using the generalized weighted least squares factor
method; (v) Kaiser-Guttman eigenvalue greater than one rule
(Guttman, 1954; Kaiser, 1960), and (vi) EGA. These authors simulated
32,000 data sets with known factor structures, varying the number of
factors (2 and 4), the number of dichotomous items (5 and 10), sample
size (100, 500, 1000 and 5000) and correlation between factors (orthog-
onal, .20, .50 and .70), resulting in 64 different conditions. For each con-
dition, 500 data sets were simulated. Golino and Epskamp (2016)
showed that EGA (Mean Accuracy = .96, SD = .19) performed compa-
rably to PA (Mean Accuracy = .97, SD = .16) and EBIC (Mean Accura-
cy = .97, SD = .16) in the two-factor structure, irrespective of the
correlation between factors, sample size or number of items. However,
EGA outperformed VSS (Mean Accuracy = .22, SD = .41), MAP (Mean

Image of Fig. 3


Table 1
Percent accuracy of extraction methods in recovering the correct number of factors under
various conditions, N = 500, in the original study of Keith et al. (2016): rows 1 to 7. Per-
cent accuracy of exploratory graph analysis (row 8).

Method Indicators per factor Mean
accuracy

Standard
deviation2 3 4 6 8 10

PA-PCA mean 0 0 0 0 25 100 20.83 36.56
MAP 0 0 0 0 0 0 0.00 0.00
Eigenvalue 0 5 60 0 0 0 10.83 22.06
ML 0 0 0 20 20 20 10.00 10.00
PA-PAF 5 10 15 85 80 100 49.17 39.73
CFA change chi 0 35 70 100 100 100 67.50 38.27
CFA AIC 5 50 90 100 100 100 74.17 35.64
EGA 100 100 100 100 100 100 100.00 0.00

Note: Methods used to determine the number of factors (factor extraction) were PA-PCA:
parallel analysis based on principal components analysis; MAP: minimum average partial
criterion; eigenvalue: Kaiser–Guttman eigenvalue greater than one criterion; ML: explor-
atorymaximum-likelihood; PA-PAF: parallel analysis based on principal axis factor analy-
sis; CFA change chi: confirmatory factor analysis with the number of factors based on the
statistical significance of change in chi-squared; CFA AIC: confirmatory factor analysis
using the Akaike information criterion; EGA: exploratory graph analysis.
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Accuracy = .78, SD = .41), Kaiser-Guttman eigenvalue rule (Mean Ac-
curacy = .86, SD = .35) and BIC (Mean Accuracy = .92, SD = .27)
when the number of factors was two. However, differences between
PA and EGA emerged in the four-factor structure. In general, EGA
reached amean accuracy of 89% (SD=31%) and PA reached amean ac-
curacy of 80% (SD = 40%). When the correlation between factors was
high (.70) and the number of items per factor was 5, only EGA was
able to correctly estimate the number of dimensions, achieving a
mean accuracy of 53% with a sample size of 1000 and 100% with a sam-
ple size of 5000. Golino and Epskamp (2016) also verified how the con-
trolled conditions (sample size, correlation between factors and
number of items) and their high-order interactions affected the mean
accuracy of each method, via ANOVA. The results showed that EGA
was the only technique attaining a high partial eta squared effect size
in only one condition (sample size). The other techniques attained
high effect sizes from three to nine conditions or their high-order
interactions.
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2. Methods

Weadopted two strategies to showhowEGAmay beused to explore
the underlying dimensionality of intelligence data. The first used the
datasets simulated by Keith, Caemmerer, and Reynolds (2016) where
PA and MAP attained low accuracies in estimating the correct number
of dimensions. They were as follows: (i) sample size of 500 cases, (ii)
high correlation between factors (.70), (iii) low factor loading (.50),
and (iv) different numbers of indicators per factor (2, 3, 4, 6, 8 or 10).
In sake of the present aims, the number of dimensions for each simulat-
ed dataset was estimated using EGA, and its accuracy was compared to
the accuracy found in the original paper. It is important to note that in
the original paper all data were simulated using the Monte Carlo com-
mand in the Mplus program, but no further information regarding the
simulation was provided (Keith et al., 2016).

The second strategy used EGA to explore the dimensionality of three
previously published empirical datasets (Must & Must, 2013, 2014;
Demetriou & Kazi, 2006; Žebec et al., 2015) and CFA to test the EGA
findings.

We applied two rules to explore the dimensionality of the empirical
datasets using EGA (see details and technical instructions in Appendix
A):

1) EGAwas applied recursively, so that dimensionswere analyzed item
by item. If a dimension was represented by only one item, this item
was deleted from the analysis and EGAwas re-run. This process was
applied repeatedly until all dimensions were represented by at least
two items;

2) If only two items from dimension A were identified as part of a dif-
ferent dimension, B, these items were deleted and EGA was re-run.

The final solution generated by EGA was submitted to a confirmato-
ry factor analysis using the robust weighted mean square estimator
(WLSMV) via lavaan (Rosseel, 2012). The fit of the models was verified
using the root mean-square error of approximation (RMSEA), the com-
parative fit index (CFI: Bentler, 1990), the normed fit index (NFI), the
nonnormed fit index (NNFI: Bentler, 1990) and the Standardized Root
Mean Square Residual (SRMR). The model fit is considered good if
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the simulated datasets of Keith et al. (2016). PA-PCA: parallel analysis based on principal
eigenvalue greater than one criterion; ML: exploratory maximum-likelihood; PA-PAF:
nalysis with the number of factors based on the statistical significance of change in chi-
ploratory graph analysis.
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Fig. 5. EGA estimated dimensions for one simulated dataset (out of 20) by each number of indicator per factor.
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RMSEA b .06 (Browne & Cudeck, 1993), CFI N .95 (Hu & Bentler, 1999),
NFI and NNFI N .90 (Bentler & Bonett, 1980) and SRMR b .08 (Hu &
Bentler, 1999).

Finally, we compared the fit of the structure generated by EGA to the
structure hypothesized by theory using confirmatory factor analysis via
the lavaan (Rosseel, 2012) package. All figures showing the standard-
ized weights of CFA models were created using semPlot (Epskamp,
2014). EGA was applied using the EGA package (Golino, 2016).

The description of the instruments used in each paper is in the fol-
lowing section. The theoretical model underlying each test/battery is
graphically presented (i.e. the CFA structure) after the description of
the variables used in each study.
2.1. Description of the empirical datasets

2.1.1. Dataset by Must and Must
The Estonian version (Must & Must, 2013, 2014) of the National In-

telligence Test (NIT; Haggerty, Terman, Thorndike, Whipple, & Yerkes,
1920) measures intelligence of schoolchildren (grades 3 to 8). This bat-
tery is composed by five paper-and-pencil timed subtests, with two
complementary scales (A and B). The dataset used in the current
paper involved 1802 Estonian children and teenagers who answered
form A in 1936 and 2006. In the current paper, we directly analyze the
NIT items, not subtest scores. This dataset was firstly used by Must
and Must (2013) and subsequently published by Must and Must

Image of Fig. 5


Table 2
Distribution of NIT subtests' items by dimension in each step of the exploratory graph
analysis. At Step 1 two itemswere removed (first rule) and at Step 2 twomore itemswere
removed (second rule). Eliminated items are colored.

EGA Step 1 EGA Step 2 EGA final structure

Items Dimension Items Dimension Items Dimension
ar3 1 ar15 1 ar1 1
ar4 1 ar16 1 ar2 1
sc11 2 c1 1 ar3 1
sc17 2 c2 1 ar4 1
sc18 2 c3 1 ar5 1
sc20 2 c4 1 ar6 1
c14 2 c5 1 ar7 1
c16 2 c6 1 ar8 1
c17 2 c7 1 ar9 1
c18 2 c8 1 ar10 1
c19 2 c9 1 ar11 1
c20 2 c10 1 ar12 1
c21 2 c12 1 ar13 1
c22 2 c13 1 ar14 1
c23 2 c15 1 sc17 2
c24 2 ar1 2 sc18 2
ar1 3 ar2 2 sc19 2
ar2 3 ar3 2 sc20 2
ar5 3 ar4 2 c14 2
ar6 3 ar5 2 c16 2
ar7 3 ar6 2 c17 2
ar8 3 ar7 2 c18 2
ar9 3 ar8 2 c19 2
ar10 3 ar9 2 c20 2
ar11 3 ar10 2 c21 2
ar12 3 ar11 2 c22 2
ar13 3 ar12 2 c23 2
ar14 3 ar13 2 c24 2
sc4 3 ar14 2 c1 3
sc7 3 sc2 2 c2 3
sc9 3 sc3 2 c3 3
sc13 3 sc4 2 c4 3
c1 4 sc6 2 c5 3
c2 4 sc7 2 c7 3
c3 4 sc8 2 c8 3
c5 4 sc9 2 c9 3
c7 4 sc10 2 sc2 4
c8 4 sc11 2 sc3 4
c9 4 sc12 2 sc4 4
sc2 5 sc13 2 sc6 4
sc3 5 sc14 2 sc7 4
sc6 5 sc15 2 sc8 4
sc8 5 sc16 2 sc9 4
sc10 5 sc17 3 sc10 4
sc12 5 sc18 3 sc11 4
sc14 5 sc19 3 sc12 4
sc15 5 sc20 3 sc13 4
sc16 5 c11 3 sc14 4
sc19 5 c14 3 sc15 4
c11 5 c16 3 sc16 4
ar15 6 c17 3 c6 5
ar16 6 c18 3 c10 5
c4 6 c19 3 c11 5
c6 6 c20 3 c12 5
c10 6 c21 3 c13 5
c12 6 c22 3 c15 5
c13 6 c23 3
c15 6 c24 3
sc1 7
sc5 8

Note: ar1–ar16 = items from the arithmetic reasoning subtest; sc1–sc20 = items from
the sentence completion subtests; c1–c24 = items from the concepts subtests.

60 H.F. Golino, A. Demetriou / Intelligence 62 (2017) 54–70
(2014). Subtests are described in Must and Must (2014). Only the first
three subtests were used in the current paper:

1) Arithmetical Reasoning (A1). The subtest consists of 16 items requir-
ing to specify an unknown quantity. For example: “Howmany seats
are there in 7 rooms, if each room has 30 seats?”
2) Sentence Completion (A2). The subtest consists of 20 items requir-
ing to fill in missing words to make a sentence understandable and
correct. An example: “The letter…… came…… good news”.

3) Concepts (A3). The subtest consists of 24 items requiring the selec-
tion of two characteristic features among several options. For exam-
ple, “apple: basket/redness/seeds/skin/sweetness”.

The theoretical structure of the NIT subtests used in the current
study is shown in Fig. 1. The latent variable of arithmetic reasoning
(AR) accounts for the arithmetic reasoning items, the latent variable of
sentence completion (SC) accounts for the sentence completion items,
and the latent variable of concepts (CON) accounts for the concepts
items.

2.1.2. Dataset by Demetriou and Kazi (2006, Study 2)
Demetriou and Kazi (2006) examined a total of 840 participants,

about equally drawn among 10–15-year-old participants. SES and gen-
der were about equally represented in all but the last age groups. An
outline of the cognitive tasks and scoring procedures used is given
below and the reader is referred to the original article for details.

2.1.2.1. The battery
2.1.2.1.1. Quantitative reasoning tasks. The quantitative tasks ad-

dressed two types of mathematical thought: Proportional reasoning
and algebraic reasoning.

2.1.2.1.2. Proportional reasoning tasks. There were two tasks varying
systematically in difficulty. The first involved two (i.e., 2/4 to 3/6) and
the second involved three factors (i.e., 2/4 to 3/6 to 1/2) varying along
their dimension of measurement. Scoring varied from 0 to 2, reflecting
the grasp of the proportional relations involved.

2.1.2.1.3. Algebraic reasoning tasks. Participants solved three equa-
tions varying in difficulty (i.e., (i) specify x, given that x = y + 3 and
y = 1; (ii) specify x, given that x = y + u and x + y + u = 30; (iii)
when is it true that L +M+N= L+ P+N?). Responses were scored
as 0 (wrong) or 1 (correct responses).

2.1.2.1.4. The causal-scientific reasoning tasks. Three tasks addressed
causal-scientific reasoning: Isolation of variables, hypothesis testing,
and integration of hypothesis with data into a model. Scoring (0–2)
reflected understanding that to test the effect of a factor one needs to
vary this factor while keeping all other factors constant; to test a hy-
pothesis one needs to systematically manipulate the factors involved;
translating a hypothesis to amodel needs to verify the expected relation
in a properly controlled experiment.

2.1.2.1.5. The spatial-imaginal tasks. Two types of spatial-imaginal
tasks were used: Mental rotation and visual memory tasks. The mental
rotation tasks asked participants to identify or visualize two- or three-
dimensional objects under various orientations or rotations. To test
imaginal memory, a visual memory task was selected from the Kit of
Factor Referenced Tests (Ekstrom, French, & Harman, 1976), where par-
ticipants identified target figures among a larger set of figures. Scoring
(0–2) reflected accuracy and resolution of visual images the participant
can produce.

2.1.2.1.6. Social thought tasks. Two types of tasks addressed social
thought: Interpersonal relationships and relativistic thinking:

The interpersonal relationships tasks required to grasp the relations
between intentions, behaviors, and effects of behaviors on a person.
Scoring (0–2) reflected the ability to go beyond observable behavior
to underlying factors, such as intentions, motives, and moral principles.

Relativistic thinking tasks required to understand the relations be-
tween personal behavior and its social consequences under various so-
cial frameworks. Participants were asked to specify alternative sides of
an argument, explain differences between arguments, and associate dif-
ferent social interests with different arguments. Scoring (0–2) reflected
understanding of the various dimensions involved in an issue, integra-
tion into a cohesive argument, and contrast arguments according to al-
ternative criteria.
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2.1.2.1.7. Drawing. Participants were asked to produce two draw-
ings differing in complexity of the objects involved and perspective
(i.e., man and a woman are standing hand-in-hand and three or
more boats on the water at sunset, some close and others further
away) Scoring (0–4) reflected the ability to produce all objects
intended in the proper relations to each other in the three-dimen-
sional space.

2.1.2.1.8. Creativity and ideational fluency. To test creativity, the Orna-
mentation and the Symbol test were selected from the Kit of Factor Ref-
erenced Tests (Ekstrom et al., 1976). These tests tap ideational fluency,
which is regarded as a component of creativity. The ornamentation test
addressed figural fluency (participants decorated each of 24 variants of
the same object with a different decorating figure). The symbol test ad-
dressed conceptual fluency (participants drew up to five symbols for
each of various concepts, such as library, sad, rush, post office, happy,
etc.). Performance on these testswas scored according to the criteria de-
scribed in the Kit of Factor Referenced Tests (Ekstromet al., 1976). There
were two scores for each test varying from 0 to 24 (ornamentation test)
or 0–25 (symbol test).

Participants were tested in groups during school hours. The presen-
tation order of tasks was counterbalanced across participants.
Cronbach's alpha was .79. The theoretical structure of the instruments
used by Demetriou and Kazi (2006) and tested by CFA in the current
study is shown in Fig. 2. Seven latent variables were found: spatial, so-
cial, and algebraic reasoning, drawing ability, and two aspects of creativ-
ity, figural and conceptual fluency.
2.1.3. Dataset by Žebec et al. (2015)
Žebec et al. (2015) examined a total of 478 participants (52%male),

drawn from each of the age years 7–17 years, twice in a 12-month inter-
val. In the current paper we analyze the data of the first wave only.
2.1.3.1. Simple reaction time (cat tasks). Participants were asked to recog-
nize the ink color of word-like sets of Xs, recognize color words, choose
between responses according to the stimuli presented, and respond to
congruent and incongruent Stroop-like stimuli (Cronbach's alpha =
.95).
2.1.3.2. Divided attention (pp tasks). This test required simultaneous
responding to two different tasks on the two panels, where the stimuli
were presented in fast succession (50 to 250 ms). Task 1 was a simple
reaction time task as above. Task 2 was an object size classification
task. Participants were asked to respond to Task 1 with the left hand
on Panel 1, and on to Task 2 with the right hand on Panel 2. (Cronbach's
alpha = .93).
2.1.3.3. Working memory (ds tasks). The extended version of forward
(FDS) and backward digit span (BDS) test included in the Wechsler
intelligence scale test for children (WISC) was used to measure com-
ponents of working memory. The FDS test comprised 10 pairs of digit
sequences varying from 2 to 11 digits. The BDS test included 8 pairs
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of digit sequences, varying from 2 to 9 digits (Cronbach's alpha =
.88).

2.1.3.4. Raven's Standard ProgressiveMatrices (rb tasks).Raven's Standard
Progressive Matrices were used to address fluid intelligence. SPM in-
clude five sets of matrices of increasing complexity (i.e., grasp relations
of figures varying along one dimension, two familiar and obvious di-
mensions, one or more implied dimensions, and several systematically
transformed dimensions) (Cronbach's alpha = .94).

2.1.3.5. Mathematics. A paper-and-pencil battery of mathematical rea-
soning was used. The battery addressed arithmetic and algebra. Items
in each domain were scaled along four levels of difficulty. In the arith-
metic tasks (arit tasks), participants were asked to specify the opera-
tions missing from simple arithmetic equations: One (e.g., 5 ∗ 3 = 8),
two (e.g., {4 # 2} ∗ 2= 6), three (e.g., {3 ∗ 2 # 4} @ 5= 7), and four op-
erations (e.g., {5 @ 2} o 4= {12 $ 1} ∗ 2)weremissing from the items of
each level.
The algebraic reasoning tasks (alg tasks) required to specify one or
more unknowns in an equation (e.g., a + 5 = 8, a = ? ; u = f + 3;
f = 1; u = ? ; if (r = s + t) and (r + s + t = 30), specify r = ?;
when is true that {L + M + N} = {L + P + N}?) (Cronbach's alpha of
the whole mathematical reasoning test = .93).

The theoretical structure of these batteries was tested by CFA and
it is illustrated in Fig. 3. Six latent variables were found: speed, mem-
ory, attention, fluid reasoning (Raven), arithmetic, and algebraic
reasoning.

3. Results: simulated datasets

3.1. Datasets simulated by Keith, Caemmerer, and Reynolds (2016)

Keith et al. (2016) estimated the number of factors in simulated
datasets with different number of cases, different correlations between
factors, and different factor loadings and number of indicators per fac-
tor. Their analysis pointed to a low accuracy of themethods they applied
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to recover the number of factors when the simulated data presented (i)
500 cases, (ii) high correlation between factors (.70), (iii) low factor
loading (.50), and (iv) different number of indicators per factor (i.e., 2,
3, 4, 6, 8 or 10). They found a factor recovery mean accuracy of zero
for MAP, irrespective of the number of indicators per factor (true num-
ber of factors = 6). Maximum likelihood exploratory factor analysis
attained amean accuracy of 10% (SD=10%);when theKaiser–Guttman
criterion for retaining factors with an eigenvalue N1 was applied, a
mean accuracy of 10.83% (SD = 22.06%) was attained. Parallel analysis
by PCA attained a slightly better accuracy, varying from zero (when
they were from 2 to 6 indicators per factor) to 100% (10 indicators per
factor), with amean accuracy of 20.83% (SD=36.56%); parallel analysis
by PAF attained a mean accuracy of 49.17% (SD = 39.73%). Two ap-
proaches using confirmatory factor analysis (i.e., specifying the number
of factors (i) based on the statistical significance of chi-square change
and (ii) using the Akaike information criterion) proved to be the best
for the determination of the number of factors when between-factor
correlations were high (.70), factor loadings were low (.50), and N =
500. These methods attained a mean accuracy of 67.50% (SD =
38.27%) and 74.17% (SD = 35.64%), respectively.

When EGA was applied to the same datasets (20 simulated datasets
per condition, in a total of 120 datasets), the estimated number of fac-
tors were 6 regardless of the number of indicators per factor (2, 3, 4, 6,
8 or 10). In other words, EGAwas able to correctly estimate the number
of factors in 100% of the cases. Table 1 shows the accuracy by method
used in the original (first seven rows) and the present study (last
row). Fig. 4 shows the mean accuracy (and error) by method and Fig.
5 shows the EGA estimated dimensions for one simulated dataset (out
of 20) by each number of indicator per factor.

It is recognized that this data set does have several limitations.
For instance, the number of replications per condition is rather lim-
ited, increasing the standard error of measurements involved. How-
ever, we opted to use this dataset as a link between the present paper
and the literature on the topic. Specifically, using this data demon-
strates, on the one hand, the formal conditions rendering EGA pref-
erable over other methods. On the other hand, our paper also
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demonstrates that EGA is preferable over other methods when ap-
plied on real data sets as well.

3.2. Results: real datasets

3.2.1. Dataset by Must and Must (2013, 2014)
The EGA was applied in two steps. At the first step, the number of

factors was estimated based on all 60 items included in the three NIT
tests used. At first, EGA abstracted nine factors, but three of them
were associated with only a single item (Table 2). Thus, at a second
step, these three items were dropped from the analysis and EGA was
re-ran on the remaining 57 items. In this second analysis, EGA abstract-
ed three dimensions, each with at least 15 items. However, two items
from the arithmetical reasoning subtest (ar15 and ar16) were found
to be part of a dimension completely formed by items belonging to
the concepts subtest. It is reminded that if only two items associated
with dimension A are found to be part of a different dimension, these
items are deleted from the analysis and the EGA is re-run. This analysis
abstracted five dimensions (Table 2): (i) Arithmetic reasoning (com-
posed by 14 items from the arithmetic reasoning subtest); (ii) concepts
n.1 (composed by four items from the sentence completion subtest and
ten items from the concepts subtest); (iii) concepts n.2 (composed by
eight items from the concepts subtest); (iv) sentence completion (com-
posed by 14 items from the sentence completion subtest); and (v) con-
cepts n.3 (composed by six items from the concepts subtest). Table 2
shows the distribution of items by dimension in each step of the explor-
atory graph analysis. At Step 1 two items were removed, following the
first rule described in method; at Step 2 twomore items were removed
following the second rule described in method section. The items elim-
inated from the analysis, in each step, are colored. The structure sug-
gested by EGA is presented in Fig. 6, which shows five clusters in the
estimated partial correlations network, using graphical lasso.

Confirmatory factor analysis showed that the structure of the NIT
items suggested by EGA (Fig. 7) has an adequate fit to the data [χ2

(1474) = 3535.98; p = 0.00; CFI = 0.97; RMSEA = 0.028; NFI =
0.96; NNFI = 0.97, SRMR= .04]. Also, the fit of the structure suggested
by theory, which prescribes only three factors (one for each subtest; Fig.
8) was marginally adequate [χ2 (1592) = 6659.97; p = 0.00; CFI =
0.94; RMSEA = 0.04; NFI = 0.92; NNFI = 0.94, SRMR = .05].

3.2.2. Dataset by Demetriou and Kazi (2006, Study 2)
In the Demetriou and Kazi's (2006) dataset EGA was applied in two

steps. In the first steps, all variables were used. However, variables arot1
and arot2, indicators of mental rotation, formed one cluster each. Thus,
at the second step of the analysis both variables were removed and EGA
was re-ran. In this second analysis, no further exclusion of items was re-
quired. This final EGA analysis suggested five dimensions: 1) Spatial abil-
ity (associated with three spatial reasoning items); 2) Creativity
(associatedwith two drawing items and ten symbol items); 3) Social rea-
soning (associated with four items of the social ability test); 4) Fluid rea-
soning (associated with three algebra items, two isolation of variables
items, five items from the hypothesis testing instrument and four items
of social ability); 5) Figural fluency (associated with two items from the
decoration task). Fig. 9 shows the dimensions found using EGA.

Confirmatory factor analysis showed that the structure of Demetriou
and Kazi's (2006) data suggested by EGA (Fig. 10) attained an adequate
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fit to the data [χ2 (550) = 769.36; p = 0.00; CFI = .99; RMSEA = .02;
NFI = .95; NNFI = .98; SRMR = .04]. However, the structure expected
by theory (Fig. 11) also presented an adequate data fit [χ2 (608) =
891.31; p = 0.00; CFI = 0.98; RMSEA = 0.02; NFI = 0.94; NNFI =
0.98; SRMR = .04]. The EGA model presents a slightly better fit, since
the CFI is higher than in the theoretical model.

3.2.3. Dataset by Žebec et al. (2015)
In the Žebec et al.'s (2015) dataset, EGA was applied in two steps. In

the first step, EGA abstracted a structurewith three dimensions, but one
of them was associated with only a single item (arit1_1). This itemwas
removed, and EGA was re-ran. The second analysis indicated four di-
mensions: 1) Attention (associated with the six cognitive control
indicators—choice reaction time, Stroop-like tasks, and three indicators
of attention); 2) fluid reasoning (associated with four of the five Raven
sets A–D, four arithmetic items and two algebra tasks); 3) processing
speed (associated with four processing speed indicators); 4)
mathematical reasoning ability (associated with three arithmetic
items and ten algebra tasks; this dimension also included Set E of
Raven Matrices, which is the most complex part of the Raven test and
also the two digit-span indicators). Fig. 12 shows the dimensions
found using EGA.

Confirmatory factor analysis showed that the structure of Žebec et
al.'s (2015) data suggested by EGA (Fig. 13) attained an adequate fit to
the data [χ2 (623) = 734.73; p = 0.00; CFI = .998; RMSEA = 0.02;
NFI = 0.99; NNFI = 0.99]. However, the structure expected by theory
(Fig. 14) also attained an adequate data fit [χ2 (687) = 905.67; p =
0.00; CFI = 0.99; RMSEA = 0.03; NFI = 0.99; NNFI = 0.99].

4. Discussion

This study suggested that EGA is closer than other competing
methods to psychology's ideal for a method that would accurately cap-
ture the dimension underlying behavior and cognitive ability. We
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showed that EGA was more accurate than other methods, including
confirmatory factor analysis, to reveal the dimensions underlying per-
formance on various cognitive test batteries under a variety of test
and sample conditions. Notably, this method was close to CFA in identi-
fyingunderlying dimensions but it alsoworked in conditionswhere CFA
failed (i.e. high factor correlation, low factor loading, sample size of 500
and only two indicators per factor). Therefore, our findings are in line
with recent research suggesting that EGA is more efficient than other
traditional methods, such as parallel analysis and MAP, in estimating
the correct number of dimensions underlying simulated datasets mim-
icking the ones found in empirical research (Golino & Epskamp, 2016).
The advantages of EGA, additionally to its accuracy in estimating the
correct number of dimensions are as follows:

1) It does not demand a large sample size to correctly estimate the
number of dimensions or factors even when the correlations be-
tween them are high (.7), the factor loadings are low (.5), and the
number of indicators per factor vary (from 2 to 10);
2) It estimates the number of dimensions/factors using a combination
of penalized maximum likelihood estimation (via graphical LASSO)
and a random walk algorithm (i.e. walktrap). These properties pro-
vide the following advantages:

a. It decreases overfitting, since the LASSO shrinks low partial corre-
lations to zero;

b. It facilitates the interpretability of the estimated networks, making
it easier to visually identify the cluster of items,which stand for the
underlying latent variables;

c. It suggests structures that are optimized in terms of fit, when
assessed by CFA.

Thus, it seems appropriate to use EGA for the identification of factors
and SEM/CFA for the specification of between factor relations, especially
when the possible direction of between factor relations needs to be
specified. This paper presents evidence that EGA offers a robust solution
to a serious problem in intelligence research pointed out by Keith et al.
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(2016). Specifically, in face of the limitations of parallel analysis and
MAP, these authors suggested that researchers use confirmatory factor
analysis (CFA) guided by some formal or informal theory about the
data, because CFA was more accurate than the other methods in recov-
ering the correct number of dimensions in their simulation study. We
argued in the introduction that theory cannot definitely specify how
many dimensions/factors underlie a given instrument or battery and
which items really relate to each dimension/factor, even if it is, admit-
tedly, usefulwhen available.We argue, in face of the evidence presented
here, that the optimum solution is to use EGA to explore the basic di-
mensionality of a given instrument and, then, use CFA to verify the fit
of the suggested structure.

It is notable that EGA is part of a new area termed network psycho-
metrics (Epskamp et al., 2017), that emerges as a subfield of psycholog-
ical networks (Epskamp and Fried, 2016), an area of research that uses
network modeling for exploratory studies of behavior Borsboom &
Cramer, 2013; Schmittmann et al., 2013). Psychological networks sug-
gest new ways for understanding psychological constructs, which may
be more informative than traditional latent-variable modeling ap-
proach, and may be useful in various fields of research such as psycho-
pathology (Borsboom et al., 2011; Borsboom & Cramer, 2013; Fried et
al., 2015; Isvoranu, Borsboom, et al., 2016a; Isvoranu, Borsboom, van
Os, & Guloksuz, 2016b), developmental psychology (van der Maas et
al., 2006), quality of life (Kossakowski et al., 2015) and cognitive neuro-
science (Smith Bassett & Ed Bullmore, 2006). As usual in any new fields,
more studies are required to investigate how EGA performs under dif-
ferent conditions, i.e. sample sizes, factor correlations, factor loadings,
number of indicators per factors, and so on. Special attention should
be given to the number of thresholds (or response categories) by item.
The work of Golino and Epskamp (2016) and the research presented
in this paper did not investigate the impact of thresholds in the accuracy
of EGA. The focus was on datasets with binary items or items with lim-
ited variationwhich are common in the field of intelligence. However, a
large number of instruments used in other fields employ Likert-like
items varying along much wider scales. This limitation needs to be re-
moved by future research.

Appendix A. Appendix

The EGA package can be installed in R using the following code:
library("devtools")
devtools::install_github('hfgolino/EGA')

The EGA package was developed as a simple and easy way to imple-
ment the Exploratory Graph Analysis technique. The package has three
main functions: EGA, bootEGA and CFA. These functions will be briefly
explained below. It is important to note that the bootEGA function was
not used in the current paper.

EGA: Estimates the number of dimensions of a given dataset/instru-
ment using graphical lasso and a random walk algorithm. The glasso
regularization parameter is set via EBIC.

Usage:
EGA(data, plot.EGA = TRUE)

A.1. Arguments

data: A dataframe with the variables to be used in the analysis.
plot.EGA: Logical. If true, returns a plot of the network of partial cor-

relations estimated via graphical lasso and its estimated dimensions.
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Fig. 13. Standardized weights of the confirmatory factor model from the structure suggested by EGA in the Žebec et al.'s (2015) dataset. Att = Attention; Spd= Processing Speed; Fld =
Fluid Ability; Opr = Operational Ability.
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Examples with datasets available in the EGA package:
ega.wmt b- EGA(data = wmt2[,7:24], plot.EGA = TRUE)

ega.intel b- EGA(data = intelligenceBattery[,7:66],
plot.EGA = TRUE)

bootEGA: Estimates the number of dimensions of n bootstraps from
the empirical correlation matrix, and returns a typical network (i.e. the
network formed by the median pairwise partial correlations over the n
bootstraps) and its dimensionality.

Usage:
bootEGA(data, n, medianStructure = TRUE,

plot.MedianStructure = TRUE)
A.2. Arguments

data: A dataframe with the variables to be used in the analysis.
n: An integer value representing the number of bootstraps.
MedianStructure: Logical. If true, returns the typical network of par-
tial correlations (estimated via graphical lasso), which is the median of
all pairwise correlations over the n bootstraps, and estimates its
dimensions.

plot.MedianStructure: Logical. If true, returns a plot of the typical
network (partial correlations), which is the median of all pairwise cor-
relations over the n bootstraps, and its estimated dimensions.

Examples with datasets available in the EGA package:
boot.wmt b- bootEGA(data = wmt2[,7:24], n = 500,

medianStructure = TRUE, plot.MedianStructure = TRUE)

boot.intwl b- bootEGA(data =
intelligenceBattery[,7:66], n = 500, medianStructure =

TRUE, plot.MedianStructure = TRUE)
CFA: Verifies the fit of the structure suggested by EGA using confir-

matory factor analysis.
Usage:

CFA(ega.obj, estimator, plot.CFA = TRUE, data,…)

Image of Fig. 13
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A.3. Arguments

ega.obj: An EGA object.
estimator: The estimator used in the confirmatory factor analysis.

“WLSMV” is the estimator of choice for ordinal variables. “ML” or
“WLS” for interval variables.

plot.CFA: Logical. Should the CFA structure with its standardized
loadings be plot?

data: A dataframe with the variables to be used in the analysis.
…: Other arguments of the lavaan package.
Examples with datasets available in the EGA package:
ega.wmt b- EGA(data = wmt2[,7:24])
cfa.wmt b- CFA(ega.obj = ega.wmt, estimator = "WLSMV",

plot.CFA = TRUE, data = wmt2)
ega.intel b- EGA(data = intelligenceBattery[,7:66])

cfa.intel b- CFA(ega.obj = ega.intel, estimator =
"WLSMV", plot.CFA = TRUE, data =

intelligenceBattery[,7:66])
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