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Abstract

Descriptive analyses of socially important or theoretically interesting phenom-

ena and trends are a vital component of research in the behavioral, social, eco-

nomic, and health sciences. Such analyses yield reliable results when using

representative individual participant data (IPD) from studies with complex sur-

vey designs, including educational large-scale assessments (ELSAs) or social,

health, and economic survey and panel studies. The meta-analytic integration

of these results offers unique and novel research opportunities to provide

strong empirical evidence of the consistency and generalizability of important

phenomena and trends. Using ELSAs as an example, this tutorial offers meth-

odological guidance on how to use the two-stage approach to IPD meta-

analysis to account for the statistical challenges of complex survey designs

(e.g., sampling weights, clustered and missing IPD), first, to conduct descrip-

tive analyses (Stage 1), and second, to integrate results with three-level meta-

analytic and meta-regression models to take into account dependencies among

effect sizes (Stage 2). The two-stage approach is illustrated with IPD on reading

achievement from the Programme for International Student Assessment

(PISA). We demonstrate how to analyze and integrate standardized mean dif-

ferences (e.g., gender differences), correlations (e.g., with students' socioeco-

nomic status [SES]), and interactions between individual characteristics at the

participant level (e.g., the interaction between gender and SES) across several

PISA cycles. All the datafiles and R scripts we used are available online.

Because complex social, health, or economic survey and panel studies share

many methodological features with ELSAs, the guidance offered in this tuto-

rial is also helpful for synthesizing research evidence from these studies.
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Highlights

What is already known
• Descriptive analyses based on studies with complex survey designs, such as

educational large-scale assessments (ELSAs), provide reliable findings for
socially important or theoretically interesting phenomena that can be gener-
alized to well-defined populations

• Many important phenomena can be examined by drawing on readily avail-
able individual participant data (IPD) from one study cycle or sample as well
as by integrating results from multiple sets of IPD

• IPD meta-analysis is a powerful tool for integrating research evidence and
for examining heterogeneity of results at the participant and study level

What is new
• IPD meta-analyses of descriptive results from studies with complex survey

designs offer unique and novel research opportunities to provide strong
empirical evidence of the consistency and generalizability of socially impor-
tant and theoretically interesting phenomena and trends.

• Using ELSAs as an example, this tutorial introduces a two-stage approach to
IPD meta-analysis that is tailored to the methodological challenges of stud-
ies with complex survey designs (e.g., sampling weights, clustered and miss-
ing IPD, dependent effect sizes), first, for conducting descriptive analyses
(Stage 1), and second, for integrating the results with meta-analytic and
meta-regression models (Stage 2).

• We provide thoroughly annotated R syntaxes; all datasets are available
online

Potential impact for Research Synthesis Methods readers outside the
authors' field
• The guidance offered in this tutorial is useful for synthesizing research find-

ings from studies with complex survey designs from a variety of fields,
because health, social and economic survey and panel studies share many
methodological features (e.g., sampling weights, clustered and missing IPD,
dependent effect sizes) with ELSAs

1 | INTRODUCTION

Quantitative descriptive analyses are a vital component
of research in the behavioral and social sciences
(e.g., education, psychology, sociology, and economics)
and many other disciplines (e.g., health sciences). Such
analyses help to “characterize the world” or a “phenome-
non” because they answer questions “about who, what,
where, when, and to what extent.”1 Quantitative descrip-
tive analyses provide robust results when being based on
representative individual participant data (IPD) from
studies with complex survey designs, such as educational

large-scale assessments (ELSAs)2 or social, health, and
economic survey and panel studies. Many studies with
complex survey designs have been conducted at both
international and national levels, involving the World
Health Surveys, the European Health Interview Survey,
the European Values Study, the Household Finance and
Consumption Survey, or the US National Longitudinal
Surveys of the Youth. Well-known examples for ELSAs
are the Programme for International Student Assessment
(PISA), the Trends in International Mathematics and Sci-
ence Study (TIMSS), the Progress in International Read-
ing Literacy Study (PIRLS), the Programme for the
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International Assessment of Adult Competencies
(PIAAC), and the National Assessment of Educational
Progress (NAEP). Since studies with complex survey
designs have been carried out for several decades, it is
now possible to answer research questions not only with
IPD from one study cycle or sample (e.g., PISA 2018) but
by integrating results from multiple sets of IPD
(e.g., PISA 2000–2018). Given the methodological com-
plexities (e.g., sampling weights, clustered and missing
IPD, dependent effect sizes) of studies with complex sur-
vey designs in general, and ELSAs in specific, a key ques-
tion is how to do this. IPD meta-analysis may be a
powerful tool for this purpose as it offers unique and
novel opportunities to synthesize evidence from descrip-
tive analyses.3 In this tutorial, we use the example of
ELSAs to offer methodological guidance on how to con-
duct IPD meta-analyses with studies using complex sur-
vey designs to contribute to the cumulative body of
knowledge on socially important or theoretically interest-
ing phenomena and trends. Notably, because complex
health, social, or economic surveys and panel studies
share many methodological features with ELSAs
(e.g., sampling weights, clustered and missing IPD,
dependent effect sizes), the guidance offered in this tuto-
rial may also be helpful to use IPD meta-analyses to syn-
thesize research evidence from these studies.4

2 | ADVANTAGES OF COMBINING
META-ANALYTIC TECHNIQUES
AND IPD FROM ELSAS

IPD meta-analyses of ELSAs may significantly enrich the
extant body of knowledge with reliable and widely
generalizable evidence for many research topics, for
example, (temporal trends in) gender differences in
achievement,5–7 or the relationship between students'
socioeconomic status (SES) and achievement.8 Perhaps
even more importantly, IPD meta-analyses of ELSAs
open up new and unique research opportunities to syn-
thesize evidence. Such research opportunities involve in-
depth meta-analyses of policy-relevant subgroups, for
example, to provide reliable empirical evidence of the
consistency and generalizability of the magnitude of gen-
der differences among top-performing students (i.e., the
top 5%) in mathematics.9 Likewise, IPD meta-analyses of
ELSAs allow researchers to examine the generalizability
of (novel) theoretical propositions across countries, for
example, to test predictions about nonlinear relationships
between achievement and academic self-concepts,10 rela-
tionships between innovative school environments and
teaching practices,11 relationships between epistemic
beliefs and educational outcomes in science,12 year-in-

school effects on academic self-concept,13 or, as we illus-
trate in the present paper, intersectional research
questions,14 such as how gender differences in students'
achievement are moderated by their SES.

2.1 | Advantages of IPD from ELSAs

The wealth of data collected in ELSAs yields manifold
insights into (a) the distributions of important individual
characteristics involving achievement and skills in vari-
ous domains (e.g., reading, mathematics), socioemotional
characteristics (e.g., achievement motivation, academic
self-concept, personality), well-being and health (e.g.,
satisfaction with life, body mass index), or sociodemo-
graphic background, (b) learning and home environ-
ments, and (c) the relational patterns between these
variables. The measures applied in ELSAs are very high
in quality because they are based on expert review
panels, pilot-tested in large field trials, and thoroughly
examined to ensure that they provide unbiased assess-
ments of key constructs.15 Using such measures, ELSAs
allow researchers to describe distributions and patterns
of relationships in a certain target population or subpop-
ulation. ELSA data are therefore obtained from large,
representative probability samples,16 thus implying that
descriptive analyses of these data meet the gold standard
for obtaining reliable knowledge about vital research
topics that can be generalized to well-defined popula-
tions.17,18 More specifically, the random sampling process
effectively responds to threats of sample selection bias
because it ensures the representativeness of the sample
on observable and unobservable dimensions of a certain
well-defined population.17,18 Further, given their large
sample sizes, ELSAs provide very precise estimates of
effect sizes for these populations16 with “effect size”
broadly defined as any quantitative estimate used to
address a certain research question.19

2.2 | Advantages of IPD meta-analyses of
ELSAs

Because ELSAs have been conducted regularly at both
international and national levels for many years, they
provide a very large volume of data—Big Data—for car-
rying out descriptive analyses. For example, PISA pro-
vides IPD from over 400 independent samples with
almost three million students taking part in one of seven
PISA cycles across a time span of 18 years (see Figure 1).
When descriptive analyses from several samples from the
same or related ELSAs are available, important questions
arise concerning the consistency, replicability, and
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generalizability of the results.20 Such questions can be
tackled with IPD meta-analyses.

IPD meta-analysis is a specific type of meta-analysis
that was developed primarily in biomedical research.21

Instead of extracting summary, aggregate data (AD) from
published or unpublished studies,22,23 researchers search
for original data that can be re-analyzed and then inte-
grated in meta-analyses.24 IPD meta-analyses can
improve the generalizability of results because IPD from
previously unpublished studies may become available.3

Access to IPD also allows the meta-analyst to apply a
standardized analysis protocol to control the quality of
the data and statistical analyses to estimate effect
sizes.3,25 Such advantages of IPD meta-analyses help

mitigate bias and unwanted heterogeneity in effect sizes,
and as a consequence, they help improve the precision of
the meta-analytic results.3,25 Furthermore, IPD allow for
the application of types of analyses that would not be
possible with aggregate data.24 For these reasons, IPD
meta-analyses are considered the “gold standard” of evi-
dence synthesis.21,24

To sum up, IPD meta-analyses that integrate the
results of descriptive analyses of ELSA data draw on the
strengths of two gold-standard methods: meta-analyses of
(a) representative probability samples and (b) the raw
data recorded for each participant. However, meta-
analytic models have only rarely been applied to results
from ELSAs in general5,7 and to IPD from ELSAs in

FIGURE 1 Sample sizes (a, b) and participating countries (c) in the full Programme for International Student Assessment (PISA)

sample per cycle and in total. Across PISA cycles, individual participant data (IPD) from k = 433 independent student samples were

collected. IPD from k = 424 student samples could be used in the present analyses (depicted in this figure). Color categories in (c) indicate

how often a certain country/economic region participated in PISA. Countries colored in white indicate no participation. [Colour figure can

be viewed at wileyonlinelibrary.com]
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particular.6,9–11,26* Why? One reason may be that there is
ample guidance available for either conducting descrip-
tive analyses of studies with complex survey designs16,27–
29 or carrying out IPD meta-analyses.25,30 But only a sin-
gle guidance paper is available that describes important
steps to meta-analytically integrate descriptive analyses
from health surveys.4 This paper, however, does not focus
on IPD meta-analyses of studies with complex survey
designs.

3 | THE PRESENT TUTORIAL

To address this gap in the literature, we aim to provide
researchers with methodological guidance on how to take
advantage of IPD meta-analyses to synthesize the empiri-
cal evidence obtained from descriptive analyses of studies
with complex survey designs. These studies share several
central methodological features (e.g., sampling weights,
clustered and missing IPD, dependent effect sizes) that
need to be taken into account when analyzing the IPD
and integrating the results.4 To this end, we use ELSAs as
an example to offer a robust and versatile work flow that
can be applied to (a) carry out quantitative descriptive
analyses with IPD from studies with complex survey
designs, which are then (b) integrated by means of meta-
analytic models. Specifically, we first discuss general
characteristics of IPD meta-analyses of ELSAs. We then
elaborate on how the two-stage approach of IPD meta-
analysis31,32 can be tailored to account for the methodo-
logical complexities of ELSAs when estimating effect
sizes in Stage 1 and integrating the results by means of
meta-analytic models in Stage 2. We illustrate the poten-
tial of the two-stage approach for integrating results of
descriptive analyses of ELSA data by drawing on PISA
public use files encompassing data from over 400 inde-
pendent samples with about three million students (see
Figure 1). Particularly, we show how to estimate effect
sizes that are often synthesized in meta-analyses in Stage
122: standardized mean differences between groups
(i.e., gender differences in reading achievement) and
bivariate correlations (i.e., the correlation of students'
SES with reading achievement). Further, we discuss and
illustrate a key strength of IPD meta-analysis—the analy-
sis of heterogeneity in effect sizes at the participant level
(i.e., how the size of gender differences in reading
achievement is moderated by students' SES). We also
elaborate on and showcase Stage 2 in which meta-
analytic and meta-regression models are applied to inte-
grate the (dependent) effect sizes as estimated in Stage
1. Finally, we discuss the opportunities, challenges, and
limitations that come from using IPD meta-analyses for
descriptive analyses of ELSA data. We also offer extensive

online supplementary material (OSM; see Supporting
Information) where we provide details on the applied
methods. Further, we share the syntax for reproducing
all results on the Open Science Framework (https://osf.
io/wfd6p/). In doing so, we want to facilitate other
researchers' use of IPD meta-analyses of studies with
complex survey designs.

4 | IPD META-ANALYSES OF
ELSAS: GENERAL
CHARACTERISTICS

4.1 | IPD meta-analyses of ELSAs and
systematic reviews

We begin our discussion of IPD meta-analyses of ELSAs
by distinguishing meta-analyses from systematic reviews
(also known as research syntheses) because these terms
have often been used synonymously even though they
refer to different methodological concepts.33 Specifically,
the term meta-analysis concerns the statistical analysis
(e.g., of IPD from ELSAs or AD from published and
unpublished studies) with the aim of integrating the fin-
dings.33(p532) The term systematic review, on the other
hand, refers to the entire process of using systematic
methods to identify, select, collect, analyze, integrate, and
critically appraise relevant research. In systematic reviews,
meta-analytic models might or might not be applied to
integrate the results.33(p535) Importantly, systematic
reviews aim to cover the complete body of empirical data
and results that are relevant to a certain research ques-
tion.34 On the other hand, IPD meta-analyses of descrip-
tive analyses of ELSA data are aimed at covering
relevant—but not the complete body of—empirical evi-
dence. They may therefore significantly contribute to the
cumulative evidence in the behavioral and social sciences
and become an important component, but they are not a
substitute for systematic reviews (see Section 6).

4.2 | One-stage and two-stage
approaches to IPD meta-analyses of ELSAs

IPD from ELSAs are typically hierarchically structured.
For example, in PISA and other international ELSAs
(e.g., TIMSS and PIRLS), IPD from several independent
student samples are available for most countries (see
Figure 2a). This data structure needs to be taken into
account when conducting an IPD meta-analysis of ELSA
data. There are two major approaches that can accom-
plish this goal: the two-stage and the one-stage approach.
In Stage 1 of a two-stage IPD meta-analysis, the IPD for
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each sample from an ELSA are used to estimate effect
sizes and corresponding sampling variances or their
square roots, the SEs (see Figure 2b). In many applica-
tions of the two-stage approach, the estimation of effect
sizes (and their sampling variances) draws on statistical
models from the large family of generalized linear models
that are specified at the participant level, for example,
regression models for continuous, binary, ordinal, or
count data.27,28 In Stage 2 of a two-stage IPD meta-analy-
sis, the effect sizes are integrated with meta-analytic
models that are also applied in AD meta-analyses, involv-
ing common-effect models (fixed-effect models) or
random-effects models.35,36 In these models, more precise
effect size estimates (in terms of their sampling vari-
ances) obtain larger weights (inverse variance weighting).

The one-stage approach, on the other hand, combines
the two stages of the two-stage approach into a single sta-
tistical model to meta-analyze the data. To this end, the
IPD from all samples of one specific or several related
ELSAs are combined in a single large data set and ana-
lyzed simultaneously in this model. For example, using
all IPD from PISA, a one-stage approach would involve
creating a data set with about three million students (see
Figure 2b). Given the hierarchical nature of these IPD,
the statistical model is typically a multilevel model taken
from the family of generalized linear mixed models.25

Both one-stage and two-stage approaches can be used
to fit statistical models that draw on the same set of
assumptions for the same set of IPD. So which approach
should be used for IPD meta-analyses of ELSAs? The major

FIGURE 2 Schematic representation of individual participant data (IPD) meta-analyses of ELSAs using Programme for International

Student Assessment (PISA) as an example: (a) Hierarchical data structure of international educational large-scale assessments (ELSAs) and

(b) one-stage and two-stage meta-analyses applied to these IPD
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difference between the two approaches lies in the proce-
dures they use to estimate the meta-analytic parameters,
and the largest differences can be expected for sparse
data.32,37 For example, when studying differences between
independent groups (e.g., male and female students), the
most notable differences in meta-analytic estimates
between these approaches can be expected for IPD meta-
analyses of ELSAs when most samples have IPD from
(a) only a few participants (e.g., <30 per group) or (b) only
a few events (e.g., <10 per group) demonstrating a rare
experience (e.g., winning an international math Olym-
piad).37(p216) Further, when examining moderating effects
at the participant level (e.g., how gender differences are
moderated by students' SES), differences between these
approaches can be expected to be largest, particularly for
binary outcomes (e.g., obtaining a college degree or not),
with only a few samples (e.g., 5) and only a few participants
per sample (e.g., <50).38(p11) In such applications, the one-
stage approach is preferred because it will likely give more
precise and less biased meta-analytic estimates.25,31,37

Sparse data occur more often when synthesizing evi-
dence, for example, in the biomedical sciences,39 than
when drawing on ELSAs (and other complex survey data)
because key characteristics of these studies are large sam-
ple sizes and a large number of available samples (see
Figure 1). Drawing on such an ensemble of IPD, empirical,
theoretical, and simulation studies have shown that the
one- and two-stage approaches provide very similar results
when statistical models that draw on the same set of
assumptions are fit to these data.31,32 In the present tuto-
rial, we therefore focus on and recommend the two-stage
approach that also offers several additional advantages.

First, the one-stage approach requires a commensura-
ble metric for the applied measures, whereas the two-
stage approach requires a commensurable metric for the
effect sizes. In this respect, the two-stage approach is eas-
ier to apply. For example, different ELSAs (e.g., PISA and
PIRLS) typically measure the same target construct
(e.g., reading achievement) with different instruments.
To allow for comparison of results across ELSAs, the
two-stage approach draws on standardized effect sizes
that are estimated in Stage 1 and meta-analytically inte-
grated in Stage 2. The one-stage approach, however,
requires to first establish a commensurable metric for the
applied measures to allow for the meta-analytic integra-
tion of results within a single model. To this end,
researchers need to harmonize the target measures, for
example by using advanced psychometric models or miss-
ing data procedures.40,41 The success of these harmoniza-
tion procedures depends strongly on the availability and
quality of the applied measures (e.g., a large number of
common items that are psychometrically equivalent

across ELSAs), which may even preclude the application
of the one-stage approach.40,41

Second, the two-stage approach requires considerably
less expertise to account for the statistical complexities that
are inherent to IPD from ELSAs (e.g., sample weights, clus-
tered and missing IPD, dependent effect sizes) than the one-
stage approach, which requires all these complexities to be
incorporated in the specification of a single model.31,32,37

This advantage becomes even more valuable when the
applied survey methodologies vary across ELSAs (e.g., num-
ber of plausible values provided for students' achievement
[see Section 5.1.4 on “Plausible Values”], methods used to
estimate sampling variances for effect sizes).

Third, IPD meta-analyses of ELSAs often require ana-
lyses of complex, hierarchical data structures with IPD from
several million individuals (see Figures 1 and 2). This may
result in an inability to analyze the data due to the insuffi-
cient random-access memory of regular computers––a typi-
cal problem with Big Data analyses.42 In such cases, the
two-stage approach may be the only feasible approach
because it takes advantage of an analytic strategy that has
been developed for these Big Data problems. This strategy
entails first splitting a single large data set (e.g., a data set
comprising about 3,000,000 IPD points from students from
PISA) into considerably smaller subsets (e.g., 424 data sets
comprising student samples from a certain country and
PISA cycle). A standardized protocol for managing and ana-
lyzing the data is subsequently applied to each subset.
Then, the results obtained for each subset are combined,
for example, by using meta-analytic methods.42

Finally, the two-stage approach can be used to integrate
a broader spectrum of effect sizes, involving effect sizes that
are typically applied in meta-analyses (e.g., standardized
mean differences, e.g., Cohen's d or correlations)22,43 as well
as less commonly used ones. For example, Keller et al.9

used the two-stage approach to meta-analyze the overlap
between the distribution of achievement profile scores as
obtained from female and male students belonging to the
group of top-performing math students in their respective
countries. This kind of effect size cannot be specified in
generalized linear mixed models that are typically applied
in the one-stage approach.

4.3 | Explaining heterogeneity in effect
sizes in IPD meta-analyses of ELSAs

4.3.1 | Heterogeneity in effect sizes at
multiple levels

A major goal of a meta-analysis is to estimate the extent
to which the magnitude of an effect size depends on
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further moderator variables.36,44,45 In IPD meta-analyses of
ELSAs, heterogeneity in effect sizes can be investigated at
different levels by applying regression and meta-regression
models. These models help to examine the extent to which
one or more categorical or continuous moderators explain
differences in effect sizes (a) across countries (Level 3 in
Figure 2a), (b) across assessment cycles within countries
(Level 2 in Figure 2a), or (c) at the participant level (Level
1 in Figure 2a). For example, a moderator analysis at the
country level may explain heterogeneity in gender differ-
ences in reading achievement between countries by
country-level characteristics, involving socioeconomic, edu-
cational, cultural, or political factors.5,9 A moderator analy-
sis at the cycle level may explain heterogeneity in gender
differences in reading achievement across time.6,7 Finally, a
moderator analysis at the participant level may examine
how gender differences in reading achievement are moder-
ated by students' SES within countries.

4.3.2 | Ecological fallacies

Compared with AD meta-analyses, IPD meta-analyses
offer one major advantage: moderator analyses at the par-
ticipant level. IPD meta-analyses of ELSAs may therefore
provide unique insights into important phenomena that
cannot (or can hardly) be provided with AD meta-analyses
because the effect sizes that depict interactions between
individual characteristics at the participant level are often
not reported at all or are available in only a small subset
of the relevant primary studies. Yet, unless data on these
effect sizes are available, it is impossible to learn about
moderating effects at the participant level. Intuitively, one
might expect that moderating effects as observed at higher
hierarchical levels (e.g., the country level)—which is possi-
ble with AD meta-analyses—would allow for valid infer-
ences about participant-level moderating effects. However,
this intuition is wrong and has been referred to by differ-
ent terms, such as, ecological fallacy,46 ecological bias, or
aggregation bias.47 We illustrate this problem in Figure 3
with artificial ELSA data from 30 countries. Figure 3 dis-
plays how the magnitude of gender differences in students'
reading achievement may be moderated by (a) students'
SES at the participant level and (b) students' SES aggre-
gated on the country level. Figure 3a,b show that the mag-
nitude of gender differences is related to average SES at
the country level (rbetween = 0.70) with larger gender dif-
ferences observed in countries with higher average SES.
Further, with increasing levels of students' SES at the par-
ticipant level within each country, the magnitude of gen-
der differences increases (rwithin = 0.50) in Figure 3a,
whereas it decreases in Figure 3b (rwithin = �0.50). Taken
together, these examples emphasize that moderating
effects may have different sizes and even directions at the

participant and country levels. Thus, it is not possible to
draw valid conclusions about moderating effects at the
participant level from results obtained at higher hierarchi-
cal levels (and vice versa).

4.3.3 | Some guidance for examining the
heterogeneity of effect sizes at various levels

The examples of ecological fallacies highlight that the
two-stage approach to IPD meta-analyses of ELSAs
requires researchers to pay special attention to several

FIGURE 3 Illustration of the ecological fallacy. Hypothetical

relationships between gender differences (in terms of d) and

students' socioeconomic status (SES) within countries at the

participant level (represented by lines) and aggregated at the

country level (represented by dots). Average gender differences are

substantially related to average SES (rbetween = 0.70) in both panels.

(a) The magnitude of gender differences is substantially positively

related to students' SES within countries (rwithin = 0.50). (b) The

magnitude of gender differences is substantially negatively related

to students' SES within countries (rwithin = �0.50). Adapted from

Thompson and Higgins47
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key issues when specifying, estimating, and interpreting
moderating effects to explain heterogeneity in effect
sizes.25,38,48,49 Arguably the most important issue here is
that it is important to match the substantive research
question on the one hand with the appropriate level of
analysis and form of centering of the moderating vari-
ables on the other.48–52

First, when the research goal is to learn about hetero-
geneity in effect sizes at the participant level, it is essen-
tial to directly model the interaction between individual
characteristics at this level in Stage 1. In particular, when
the research goal is to study moderating effects for the
populations represented by each sample (see Model Set
3 in Section 5.1.5), the regression models that need to be
specified for each sample must include the target interac-
tion effect(s) between the predictor variables depicted as
multiplicative terms (e.g., Gender � SES) in addition to
the main effects of these predictors (e.g., Gender and
SES).25,48,49,53,54 In Stage 2, the multiplicative terms are
integrated with meta-analytic and meta-regression
models.25,48,49,53,54 Of note, the regression models used in
Stage 1 can be extended (e.g., by using cubic spline func-
tions) to explore the extent to which the magnitude of
the moderating effect varies along the distribution of a
certain predictor variable at the participant level.48 Inte-
grating the results of these extended models may require
multivariate meta-analytic and meta-regression models
in Stage 2.48,55

Second, for regression analyses involving interactions
as described above, it is recommended that the predictor
variables in these models are centered or z-standardized
to reduce collinearity and ill-conditioning in the data.51,52

Further, to facilitate the interpretation of regression coef-
ficients for interaction effects, each predictor variable
should have a meaningful zero point. Such zero points
can be achieved, for example, by dummy-coding nominal
variables (e.g., gender) or z-standardizing or centering
continuous variables (e.g., occupational status as a mea-
sure of SES).52 Of note, dichotomizing continuous predic-
tor or outcome variables when examining interaction
effects (e.g., with the goal of improving the interpretation
of results) is not recommended because doing so
decreases the precision with which the interaction term
can be estimated.48

Third, when applying the two-stage approach to IPD
meta-analyses of ELSAs to examine the heterogeneity of
effect sizes, we strongly recommend that researchers use
the analytic strategies (e.g., meta-analyzing interaction
terms) as described above because these strategies can
help researchers avoid the statistical pitfalls that are
likely to occur when using alternative approaches.48,49,53

In particular, when examining how effect sizes vary
across participant subgroups (e.g., male and female stu-
dents), it might be tempting to estimate effect sizes for

each subgroup separately for each sample in Stage
1, meta-analytically combine these effect sizes within
these subgroups in Stage 2, and then compare the meta-
analytic results across subgroups. However, this strategy
should not be used because it is prone to ecological biases
as it combines moderating effects that may be observed
within samples with moderating effects that may be
observed across samples (e.g., across countries).48,49

Fourth, many ELSAs apply stratified multistage ran-
dom sampling schemes (see Section 5.1.1), for example, by
first drawing random samples of schools within a country
and then sampling students within schools. This sampling
process leads to clustered data at the sample level
(e.g., students nested in schools). It is important to always
consider the clustered data when estimating the SEs of the
effect sizes in Stage 1 (see Section 5.1.2). However, depend-
ing on the substantive research question, the clustered
nature of the data might or might not be considered when
estimating the effect size. For example, when the research
goal is to study the extent to which the magnitude of gen-
der differences is moderated by students' SES in the total
population that is represented by a certain sample, it is
sufficient to specify a linear regression model for each
sample as described above in Stage 1. Notably, the result-
ing effect size represents an amalgam of the within-cluster
interaction between gender and SES (e.g., within schools)
and the between-cluster interaction between these vari-
ables aggregated to the cluster level (e.g., the proportion of
female students in schools and the average SES at school
level). Thus, when the research goal is to disentangle
within-cluster relationships from between-cluster relation-
ships in Stage 1, statistical models (e.g., multilevel models)
that provide separate effect sizes for each hierarchical level
in each sample need to be specified. To this end, it is nec-
essary to center all variables (including dummy-coded var-
iables, e.g., gender) within clusters within each sample, for
example, by subtracting the school-specific proportion of
female students from each student's value on the gender
variable or subtracting the average SES at the school level
from each student's value on the SES variable.50 The inter-
action term is then computed by multiplying the predictor
variables after centering them within clusters. When using
this approach, it is important to (a) use appropriate
approaches (e.g., weights at the participant and cluster
levels) that take into account the sampling process of the
ELSA when estimating the effect sizes at the participant
and cluster levels in Stage 1 (see also Section 5.1.1)56,57

and (b) consider the possibility that the magnitude of
effect sizes may vary between clusters (e.g., by specifying a
multilevel model in Stage 1 that includes a random effect
for the interaction term).48

Fifth, in IPD meta-analyses of international ELSAs,
some moderator variables may vary within and between
countries when meta-regression models are used to
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examine the heterogeneity of effect sizes in Stage 2. For
example, some studies have found that gender differences
in mathematics achievement are moderated by gender
equality indicators at the country level (e.g., the percent-
age of women in tertiary education in a country).5,9 These
factors may vary within countries across time
(e.g., because of political initiatives to reduce gender dis-
parities in a certain country) or between countries
(e.g., because of stable between-country differences in the
educational and economic opportunities offered to men
and women). Because moderating effects may vary in
magnitude and direction within and between countries,
including a certain moderator as a single variable in the
meta-regression model yields a meta-regression coeffi-
cient that comprises a mixture of the within- and
between-country relationships.58,59 To disentangle these
within- and between-country relationships, the meta-
regression model should contain (a) the aggregated
country-specific mean of the moderator (e.g., the
country-specific value of a certain gender equality indica-
tor averaged across time) to estimate the moderating
effect at the country level and (b) the centered value of
the moderator (e.g., the deviation of a gender equality
indicator as observed at a certain point in time from the
country-specific average) to estimate the moderating
effect within countries.59

4.4 | Missing data in ELSAs

4.4.1 | Sporadically and systematically
missing data

All empirical analyses face the problem that missing
values reduce the information available on effect sizes,
moderator variables, or both. Missing data can take dif-
ferent forms in IPD meta-analyses of ELSAs: (a) sporadi-
cally, (b) planned systematically, and (c) unplanned
systematically missing data.60 Sporadically missing data
occur at the participant level (Figure 2a) and refer to
missing data for those participants who were included in
a certain sample and who were administered a certain
instrument (e.g., a test booklet or questionnaire). For
example, such missing data may result when participants
intentionally ignore or forget to answer certain questions
or test items. By contrast, planned systematically missing
data occur in ELSAs at the participant level because
planned missing designs (also called booklet designs) are
applied (see Section 5.1.4 on “Plausible Values”), thus
implying that some data are missing for random subsam-
ples of participants. Finally, unplanned systematically
missing data may occur in ELSAs at the cycle level (see
Figure 2a) when data are not available for all individuals

in a certain sample.60 For example, in PISA 2006, all stu-
dents in the United States had (unplanned) systemati-
cally missing data on reading achievement because the
applied paper-pencil test contained severe printing
errors.61(p281) Thus, it was not possible to estimate, for
example, gender differences in reading achievement for
that cycle in the United States. Moreover, unplanned sys-
tematically missing data may also occur at the cycle or
country level when information on a certain moderator
variable is not available for a specific cycle or country
(e.g., information on country-specific socioeconomic or
political factors).

4.4.2 | Missingness mechanisms

Fortunately, (most) missing data in ELSAs can be han-
dled effectively. The possibility of imputation and the
choice of imputation method depends on the type of
missing values. Three different missingness mechanisms
can be distinguished: missing completely at random
(MCAR), missing at random (MAR), and missing not at
random (MNAR).62,63 For example, if students happen by
chance to be ill on the day of testing, their achievement
data can be considered to be MCAR. Missing data in
ELSAs are MAR when missingness on a target variable
X can be explained by other observed data in the data set
but does not depend on unobserved data, including unob-
served values of X itself. For example, MAR occurs for
achievement data if school personnel discourage students
with lower SES from taking the tests. However, when stu-
dents' SES is observed and taken into account, missing-
ness does not depend on the unobserved achievement
scores. Finally, missing data in ELSAs are MNAR when
the missingness on X depends on unobserved data
(e.g., unobserved values of X itself). For example, MNAR
occurs for achievement data if school personnel discour-
age students they know will perform poorly on the test
from coming to school on testing days. If the school per-
sonnel's knowledge is not observed, and can thereby not
be taken into account, the missingness of the achieve-
ment data depends on an unobserved variable.

The missingness mechanism describes the conditions
under which a certain missing data method works best to
provide unbiased and precise estimates of statistical para-
meters.62,63(p526) Most modern missing data methods,
involving multiple imputation or full information maxi-
mum likelihood, were developed for situations in which
MAR or MCAR is assumed.60,63 These methods substan-
tially outperform traditional methods (e.g., listwise dele-
tion) or work at least equally well.62–64 In Section 5.1.4,
we explain how modern missing data methods can be
applied in the context of the two-stage approach to IPD
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meta-analysis of ELSAs to deal with sporadically and
planned systematically missing data in Stage 1. In
Section 5.2.4, we discuss how to treat unplanned system-
atically missing data in Stage 2.

5 | INTRODUCING THE TWO-
STAGE APPROACH TO IPD META-
ANALYSIS TAILORED TO ELSAS

In the following, we discuss and illustrate how to tailor
the two-stage approach to IPD meta-analysis to the meth-
odological complexities of ELSAs. In Stage 1, the tailoring
involves addressing the statistical challenges of using IPD
from complex survey designs (e.g., sampling weights,
clustered and missing IPD) when estimating effect sizes
for descriptive analyses. Because ELSAs have been con-
ducted regularly at both international and national levels
for many years, several effect sizes may be available for
the same country. These country-specific effect sizes are
likely to be correlated (i.e., dependent); that is, they are
more similar to each other than to effect sizes from other
countries. In Stage 2, the tailoring therefore involves tak-
ing the dependent structure among effect sizes into
account when integrating the results with meta-analytic
and meta-regression models.

5.1 | Stage 1: Effect size estimation for
IPD from ELSAs

ELSAs implement various methodological state-of-the-art
features, for example, to ensure that data are representa-
tive at the population level and to cover as much content
as possible with surveys that are as brief as possible. In
addition, as in any other study, missing values occur in
ELSA data. These features and characteristics need to be
taken into account when estimating effect sizes and their
sampling variances in IPD meta-analyses.

5.1.1 | Stratified multistage random
sampling and (final) sample weights

Stratified multistage random sampling
ELSAs are designed to obtain precise estimates of effect
sizes for a well-defined population. The sampling pro-
cesses in ELSAs achieve this by two means: representa-
tive, random selection of study participants and large
sample sizes.16 To this end, ELSAs often apply stratified
multistage sampling procedures. For example, using two-
stage sampling, the primary sampling units (PSUs;
e.g., schools) are randomly selected within strata
(e.g., geographic regions, types of schools) in the first stage

of sampling. In the second stage, a random sample of indi-
viduals (e.g., students) are selected from a certain PSU.
Stratification offers at least two advantages. First, it guar-
antees that a prespecified number of individuals who
belong to a certain (policy-relevant) subgroup (i.e., the
stratum) is included in the sample. Second, stratified sam-
pling helps to substantially improve the precision needed
to estimate statistical parameters when the strata variables
are related to the key target outcomes (e.g., student
achievement).28,65

Stratified multistage random sampling as applied
in PISA
To illustrate the stratified multistage random sampling
process that is typically applied in ELSAs, we use PISA as
an example. PISA is aimed at evaluating education sys-
tems worldwide at the end of compulsory education by
assessing skills and knowledge in the target population of
15-year-old students. PISA sets high-quality standards for
collecting representative probability samples and obtain-
ing precise estimates of effect sizes.15 Specifically, at least
4500 students in each country participate in each PISA
cycle, or the full student population is included if it is
smaller than 4500. To this end, most countries apply a
stratified two-stage sampling design. In the first sampling
stage, individual schools with 15-year-old students are
systematically sampled from a stratified list of all schools
with sampling probabilities proportional to the number
of 15-year-old students enrolled. Strata are specific for
each country and include characteristics that explain per-
formance differences between schools, for example, geo-
graphic regions or school types. In each country, a
minimum of 150 schools have to be selected; if a country
has fewer than 150 schools, all schools are selected. Also,
in most countries, 35 students who are 15 years old are
randomly selected within schools; if a school has fewer
than 35 students at age 15, all students in this age group
are selected.

(Final) sample weights
After drawing a stratified sample of participants, the next
step is to weight the data to be able to calculate unbiased
estimates of effect sizes for the target population (i.e., a
well-defined finite population). A well-defined finite pop-
ulation is a population for which the number of members
is known. For inferences to finite populations, each
member of the population has a non-zero probability of
being selected into the sample. To this end, a sampling
frame is required to estimate the total number of popula-
tion members. Based on the sampling frame, the data
from the individuals selected from the sample are
weighted when estimating the effect size. The weight can
then be interpreted as the number of people in the popula-
tion who are represented by a certain individual who was
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selected from the sample. OSM.2 provides a didactic exam-
ple for the computation of weights in stratified two-stage
random sampling. Specifically, the weights are computed
such that they reflect the joint (i.e., multiplied) probabili-
ties of the inclusion of the PSUs (e.g., schools) as well as
of the individuals in the PSUs (e.g., students). Notably,
weights in multistage probability samples often require
some adjustments to obtain participants' final weights.
Adjustments involve accounting/correcting for (a) the
over- or undersampling of some strata of the population
(e.g., when a larger number of minority students were
sampled to obtain more precise effect sizes for this sub-
population), (b) issues in the sampling frame because of
inaccuracies in estimating the total number of population
members (e.g., because the sampling frame was deter-
mined 2 years before the data were collected),
(c) nonresponse at the level of PSUs (e.g., a school selected
for the sample did not participate), and (d) nonresponse at
the individual participant level (e.g., a selected student did
unexpectedly not take part in the assessment).66,67 The
final weights to which such adjustments are applied are
then used to estimate the effect size.†

5.1.2 | Clustered data and the estimation of
sampling variances

Clustered data
The multistage random sampling procedure makes the
computation of sampling variances more complex than
in studies with simple random sampling. In simple ran-
dom sampling, individuals are selected independently of
each other. Thus, in standard methods for computing
sampling variances of effect sizes, selected individuals are
treated as independent observations.57 By contrast, in
multistage sampling, individuals selected from the same
PSU do not represent independent observations. Instead,
the multistage sampling process induces dependencies
among the selected individuals, thus leading to so-called
clustered data.57,65,66 In particular, students in the same
school are often found to be (much) more similar to each
other than to students from other schools.69 These simi-
larities may result from, for example, performance-based
tracking into a certain school (or type of school) or shar-
ing the same teachers. Importantly, the dependencies
resulting from multistage sampling need to be taken into
account because they substantially increase the sizes of
the sampling variances of the effect sizes.57

Estimation of sampling variance
Several methods have been developed to account for the
estimation of the sampling variance of clustered data,
involving sandwich estimators, multilevel models, lineari-
zation methods, and replication techniques.65,68,70 For IPD

from ELSAs, we recommend replication techniques
because they (a) are asymptotically consistent for the true
sampling variance with increasing sample size, (b) provide
sampling variance estimates that are very similar to those
obtained from using more complex procedures, (c) are
robust and can be flexibly applied to estimate sampling var-
iances for a very large variety of effect sizes (e.g., mean dif-
ferences, correlations, and regression coefficients), and
(d) are well supported by relevant information
(i.e., replicate weights) in public use files because they are
the standard method applied in ELSAs.65,67,70 Notably,
sometimes only replication techniques can take full advan-
tage of the stratified sampling design because the explicit
information on strata membership needed to obtain better
(i.e., smaller) sampling variances with sandwich estimators,
multilevel models, or linearization methods is not provided,
or details are left out to guarantee the confidentiality and
anonymity of individuals (e.g., students or teachers).15(p198)

Two replication techniques are commonly applied in
ELSAs for which replicate weights are provided in public
use files71: the Jackknife (JK) method, which is used
(with different modifications, e.g., JK2) to estimate sam-
pling variances (e.g., in TIMSS, PIRLS, and NAEP), and
the balanced repeated replication (BRR) method, which
is applied in a modified form (i.e., Fay BRR), for example,
in PISA.66,67 The common idea behind all replication
techniques is to use computational intensity to tackle the
problem that an analytical technique for estimating the
sampling variance of a certain effect size T is not avail-
able (for a certain statistical model) or has not yet been
developed.29,70 Each replication approach therefore esti-
mates the sampling variance v(T) by using a large num-
ber of somewhat different subsamples of PSUs—the
replicates—taken from the original sample. The subsam-
ples are derived from applying the replicate weights to
the original data. The variability of the resulting effect
size estimates around T (as obtained from the original
sample) is then used as an estimate of v(T).29,66,70 OSM.3
provides details on how the replicate weights are derived
for JK2, BRR, and Fay BRR and how these weights are
used to obtain the sampling variance.

5.1.3 | Estimating effect sizes

Unstandardized and standardized effect sizes
A key feature of ELSAs is that many of the applied mea-
sures provide a metric that is commensurable across time
or countries (e.g., achievement measures). Thus, meta-
analysts can compute unstandardized effect sizes that are
based on this original or raw metric, involving mean dif-
ferences between groups or unstandardized regression
coefficients. Alternatively, the meta-analyst can compute
standardized effect sizes, involving Cohen's d or Hedges'
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g, correlations (r), and standardized regression coeffi-
cients (β). Both the standardized and unstandardized
options have advantages and disadvantages.72,73

One advantage of unstandardized effect sizes is that
their sampling variance can be expected to be somewhat
smaller than that of standardized effect sizes. This implies
that unstandardized effect sizes can be estimated more
precisely because standardized effect sizes are computed
as ratios where both the numerator and the denominator
are subject to sampling variability.74(p175) For example, d is
the mean difference between two groups divided by an
estimate of the population SD. Further, measures with a
commensurable metric are also necessary to compute
unstandardized effect sizes that address research questions
that focus on a comparison of effect sizes in absolute terms
(e.g., To what extent has the mean level of the reading
achievement of a certain country changed over time?).
Finally, if the raw metric is intuitive (e.g., number of days
absent in school, income in Euro or US dollars) or well-
established (e.g., body mass index), unstandardized effect
sizes are advantageous because their meaning can be con-
veyed much more easily to a broader audience comprising
researchers as well as practitioners and policy makers.72,73

A major advantage of standardized effect sizes is that
they allow results to be compared across studies even
when different measures were used because the results
are converted to a standardized scale.72 For example,
PIRLS and PISA use different reading achievement tests.
Nevertheless, gender differences in terms of standardized
mean differences (e.g., d or g) can be compared and com-
bined across studies because they are expressed in terms
of SD units. Further, standardized effect sizes are well-
established in the behavioral and social sciences.22,72

Hence, when standardized effect sizes are computed for
ELSAs, their magnitudes can be compared with relevant
prior research as well as with established benchmarks
that are expressed in terms of SDs. Such benchmarks
involve typical intervention effects, learning gains, differ-
ences between policy-relevant subgroups (e.g., gender,
ethnicity), or differences between low-achieving and
average-achieving schools.75 Because of these advantages,
we focus on standardized effect size measures in the pre-
sent tutorial. Notably, when the research goal is to meta-
analyze effect sizes that are based on measures with a
commensurable metric, meta-analysts can capitalize on
the advantages of both unstandardized and standardized
effect sizes.

Linear regression models to estimate standardized effect
sizes
When estimating effect sizes for IPD meta-analyses of
ELSAs, it is important that researchers specify a statisti-
cal model that matches the substantive research question.
Many substantive research questions (e.g., for ELSAs and

other complex surveys) require researchers to estimate
effect sizes for the total population that is represented by
a certain sample. Such effect sizes (and their sampling
variances) can often be estimated by drawing on the large
family of generalized linear models. In particular, linear
regression models provide a versatile statistical frame-
work for estimating the key standardized effect size mea-
sures that are applied in many meta-analyses,22 involving
standardized mean differences between two independent
groups and correlations. Moreover, linear regression
models can also be applied to estimate standardized effect
sizes that depict moderating effects at the participant
level. Figure 4 illustrates the model specifications that we
used in our empirical examples.

When using linear regression models, obtaining stan-
dardized effect sizes requires the standardization of some
or all of the variables that are involved in estimating the
effect sizes. First, computing standardized mean differ-
ences between independent groups requires the outcome
(e.g., reading achievement) to be z-standardized (M = 0
and SD = 1) by using estimates of the population mean
and SD. The indicator variable that provides information
about group membership should be dummy-coded
(e.g., 0 = male students, 1 = female students). The stan-
dardized regression coefficient (e.g., βGender) then depicts
a standardized mean difference (equivalent to d). Second,
a bivariate regression model where both the outcome
(e.g., reading achievement) and the predictor variable
(e.g., the SES measure) are z-standardized is needed to
compute correlations. The bivariate standardized regres-
sion coefficient (e.g., βSES) is identical in size and inter-
pretation to the correlation between the outcome and
predictor.43 Third, examining moderating effects at the
participant level requires a multiplicative term between
the predictor variables to represent their interaction
(e.g., Gender � SES; see Section 4.3.3). To standardize
regression coefficients for interaction terms, nominal var-
iables (e.g., gender) can be dummy-coded, and continu-
ous predictor variables (e.g., SES) can be z-standardized.

The models illustrated in Figure 4 do not provide sep-
arate effect sizes to disentangle relationships within and
between clusters within a certain sample. However, for
some substantive research questions researchers may
need to obtain effect sizes that depict relationships at dif-
ferent hierarchical levels within a certain sample
(e.g., separating gender differences in reading achieve-
ment as observed within and between schools within a
certain country). To this end, researchers can, for exam-
ple, apply a two-stage approach to IPD meta-analysis in
which multilevel models are used to estimate effect sizes
for the within-cluster and between-cluster relationships
in each sample in Stage 1. These effect sizes can then be
integrated with separate meta-analytic models in Stage
2 (see also Section 4.3.3).
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5.1.4 | Missing data in ELSAs

Missing data can take different forms in IPD meta-ana-
lyses of ELSAs. In the following, we discuss how to han-
dle planned systematically and sporadically missing data.

Plausible values
To cover a broad range of content, ELSAs often assess
participants' characteristics by applying a planned miss-
ing design (so-called booklet designs) where each partici-
pant is randomly assigned to a booklet that comprises a
selected subset of test items or questions taken out of a

pool of several hundred test items or questions. To han-
dle the resulting systematically missing data to estimate
unbiased group-level effect sizes, ELSAs draw on a meth-
odology that is referred to as plausible values (PVs).67

PVs reflect the idea that individual characteristics
(e.g., achievement) are latent variables that cannot be
observed directly with the applied measures but need to
be estimated.66,76 To reflect the uncertainty underlying
the estimation process, a range of possible values, the
PVs, are estimated for each individual rather than a sin-
gle point estimate (e.g., sum score). Specifically, PVs are
derived as random draws from a distribution that is

FIGURE 4 Illustration of the model sets applied to estimate standardized effect sizes (and their sampling variances) using data from

Germany (Programme for International Student Assessment [PISA] 2018) as an example: (a) Gender differences in reading achievement

(βGender; Model Set 1), (b) the relationship between students' socioeconomic status (SES) and reading achievement (βSES; Model Set 2), (c) the

relationships between reading achievement and gender and SES, and the interaction between gender and SES (βGender�SES; Model Set 3),

(d) gender differences in reading achievement as a function of students' SES (β�Gender as implied by Model Set 3). Specification of model sets

and pooled results as obtained for the German PISA 2018 sample: (a) z: dREADACHict ¼ β0ct þβGender,ct �Genderict ¼�0:11þ0:25 �Genderict;
(b) z: dREADACHict ¼ β0ctþβSES,ct � z:HISEIict ¼ 0:35 � z:HISEIict ; (c) z: dREADACHict ¼ β0ct þβGender,ct �GenderictþβSES,ct � z:HISEIict
þβGender�SES,ct �Genderict � z:HISEIict ¼�0:11þ0:24 �Genderictþ0:34 � z:HISEIictþ0:03 �Genderict � z:HISEIict; (d) β�Gender ¼ 0:24þ
0:03 � z:HISEIict . Indices: i, student; c, country; t, cycle. z:READACH, z-standardized reading achievement score (M = 0, SD = 1 for the

German sample in the year 2018 cycle). z:HISEI, z-standardized SES measure (M = 0, SD = 1 for the German sample in the year 2018 cycle)
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estimated for each individual. These distributions are typ-
ically estimated by using item response theory (IRT)
based on individuals' responses (e.g., to the test items)
and further background information (e.g., individuals'
socio-demographic background).76 Using these proce-
dures, for each participant between 5 ≤ N ≤ 20 PVs are
typically provided in public use files from ELSAs. Apply-
ing these PVs in descriptive analyses yields unbiased
group-level estimates of effect sizes in a certain popula-
tion (e.g., a country's total student population) or subpop-
ulation (e.g., male or female students). However, PVs do
not allow researchers to reliably assess each individual's
characteristics.67

The substantive-model-compatible sequential modeling
approach
ELSAs may also contain planned, systematically missing
values for which PVs are not provided in public use files
or are only available for a subsample of participants
(e.g., mathematics achievement in PISA 2000). Further,
many items or scales in ELSAs have unplanned, sporadi-
cally missing values (e.g., the SES measure that we
applied in the empirical examples). There is on-going
research on how to best handle such missing data in IPD
meta-analyses.60,77,78 On the basis of the logic of the two-
stage approach, we suggest that missing data be imputed
separately for each student sample at the participant level
(see Figure 2). In using this approach, it is possible to
impute (a) sporadically and (b) planned systematically
missing data that occur within a certain sample in Stage
1. This imputation strategy is well-suited for examining
moderating effects at the participant level,79 and it does
not require any assumptions about how the effect sizes
vary across samples.77(pp509,510) Further, this approach
draws on the strength of Big Data analytic strategies42 to
avoid plausible convergence problems when using a large
volume of IPD demonstrating a complex hierarchical
data structure (see Figure 2).

However, because missing values are imputed sepa-
rately for each sample, in this approach, strength in the
imputation process cannot be borrowed from the results
obtained from other samples to impute unplanned sys-
tematically missing values that are missing for whole
samples.60,77,78,80–82 For example, it would not be possible
to impute the unplanned systematically missing data on
students' reading achievement for the United States in
PISA 2006 (see Section 4.4.1). Further, it is not possible to
incorporate higher level covariates at the cycle or country
level into the imputation model (see Figure 2). Hence,
the imputation strategy that we present here may some-
what underestimate moderating effects at these levels in
meta-regression models.60,77,78,80–82

To implement the imputation strategy separately for
each sample, we suggest that researchers apply the

substantive-model-compatible sequential modeling
(SMC-SM) approach for two reasons.79,83 First, the SMC-
SM approach is a member of the larger family of multiple
imputation procedures, which all draw on an imputation
model to replace missing values with imputed values to
provide complete data. Because the true values of the
missing data are unknown, the imputation model uses
the observed data (from participants for whom data are
not missing) to create a predictive distribution from
which the complete data are sampled (for participants for
whom data are missing). More specifically, by using a
Markov chain Monte Carlo algorithm, the predictive dis-
tribution is applied to impute the missing values in the
original data M times to obtain M complete data sets.79

Each of these M imputed data sets is then used to esti-
mate an effect size with a certain target model. The
resulting variability in effect sizes across multiply
imputed data sets reflects the uncertainty of the imputa-
tion process.62,84 Importantly, with these multiply
imputed, complete data, it is possible to take full advan-
tage of all standard statistical tools that take the method-
ological features of ELSAs into account when estimating
effect sizes (e.g., applying sample weights) and their sam-
pling variances (e.g., replication techniques) in Stage 1 of
an IPD meta-analysis.

Second, it is important that the imputation model that
is used to generate the imputed values is at least as gen-
eral as the target model that is used to estimate the effect
sizes. For example, if the target model includes interac-
tion effects (e.g., a linear regression model with an inter-
action term), the imputation model needs to take into
account these interaction effects. The imputation model
of the SMC-SM approach is therefore specified such, that
a joint predictive distribution is created that is based on a
sequence of conditional models. Importantly, the target
model (or a more general model) is included in this
sequence. This guarantees that the imputation model is
compatible with the target model (SMC).85 One particu-
lar advantage of the SMC-SM approach is that it can
accommodate normally distributed and skewed continu-
ous and binary predictor variables as well as the multile-
vel structure of the data in these conditional models.
Hence, it is well suited for imputing missing data to esti-
mate effect sizes in ELSAs with clustered data (see
Section 5.1.2) that draw on standard regression models
(e.g., to estimate mean differences and bivariate regres-
sion relations) but also regression models involving mod-
erating effects at the participant level (with highly
skewed predictor variables).

As noted above, the imputation model is needed to
impute the missing values in the original data M times to
obtain M complete data sets. One general rule of thumb
is that the number of imputed data sets M should be at
least as large as the percentage of individuals in a sample
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with one or more (sporadically) missing values.86(p388)

However, because multiple imputations can be computa-
tionally intensive, this rule of thumb might not be feasi-
ble with a large proportion of missing values. Often, a
smaller number of imputations with a reasonable num-
ber of iterations may also be sufficient for the imputation
algorithm to converge. Furthermore, it is recommended
that auxiliary variables be included in the imputation
model.79,87 Auxiliary variables are not part of the target
model itself but are related to the propensity of missing
data and to the variables with missing values themselves.
Using auxiliary variables may (a) enhance the plausibility
of the MAR assumption79 and (b) substantially reduce
bias in the parameter estimates.87 Finally, it is strongly
recommended that researchers check the quality of the
imputed data by examining imputation diagnostics.64

Applying PVs, multiple imputations, and nested
multiple imputations to estimate effect sizes and their
sampling variances
All multiple imputation approaches involving PVs and
the SMC-SM approach comprise three steps to handle
missing values. In Step 1, missing values are imputed by
using some imputation model to obtain N PVs or
M multiply imputed data sets. In Step 2, once the PVs or
the multiply imputed data are available, the meta-analyst
can apply the target model to estimate the target effect
size T (by using the final weights) and its sampling vari-
ance v(T) (e.g., by using JK2 or Fay BRR) from each PV
or each imputed data set (e.g., when an ELSA provides
10 PVs, the target effect size is estimated 10 times). In
Step 3, the average effect size and its sampling variance
are computed by pooling the effect size estimates
obtained in the second step. The uncertainty that results
from imputing unknown missing values induces some
additional variability to the results. In addition to the
sampling variance for each PV or each multiply imputed
data set, there is between-imputation variance of effect
sizes around the average effect size. The total sampling
variability for the average effect size is then computed as
the sum of the average sampling variances and the
between-imputation variance (see OSM.4 and OSM.5 for
details). In accordance with Burgess et al.'s88 recommen-
dations, the average effect size (and its sampling vari-
ance) is then used in Stage 2 of the IPD meta-analysis.

As noted above, key outcome variables in ELSAs
(e.g., achievement) are often represented as a set of
N PVs rather than a single variable. When using PVs, the
SMC-SM approach is extended as a nested multiple
imputation approach.89 Effect size calculation with
nested multiply imputed data also implies three steps.
First, for each PV, a set of M imputed data sets is
obtained by using the SMC-SM approach as described

above. Second, the target model is run on all M imputed
data sets for each of the N PVs, resulting in N � M effect
size estimates and sampling variances (e.g., imputing a
data set M = 10 times that provides N = 10 PVs would
yield 100 effect size estimates and sampling variances).
Third, the average effect size and its sampling variance is
pooled across all N � M effect size estimates (see OSM.5
for details).

Finally, it is important to note that using a “shortcut”
where participants' average PV or average multiply
imputed value is used rather than conducting the ana-
lyses separately for each PV or multiply imputed data set
will lead to biased results and statistical inferences. The
shortcut will underestimate the heterogeneity of the dis-
tribution (e.g., the distribution of students' achievement)
and the sampling variance of the resulting effect size
estimate.67

5.1.5 | Empirical examples: Estimation of
effect sizes and their sampling variances

Research questions
We illustrate the potential of IPD meta-analyses of ELSAs
by taking advantage of international PISA data (see
Figure 1). In doing so, we demonstrate how to estimate
the kind of effect sizes that are typically applied in meta-
analyses.22,43 First, we estimate standardized mean differ-
ences to depict average gender differences in reading
achievement. This analysis expands on previous research
by Nowell and Hedges6 and Reilly et al.7 that also used
meta-analytic models to integrate gender differences in
reading achievement as observed in ELSAs from the
United States. Second, we estimate correlations to depict
how reading achievement and students' SES are related.
This analysis extends Sirin's8 meta-analysis, which exam-
ined the association between achievement and SES in the
United States. Third, we illustrate a key strength of IPD
meta-analysis by analyzing the heterogeneity in effect
sizes at the participant level. To this end, we examine
how the magnitude of gender differences in reading
achievement is moderated by students' SES. This analysis
connects to current quantitative intersectionality research
that posits that each individual is simultaneously influ-
enced by multiple social identities (e.g., gender and SES)
that interact in explaining educational outcomes.14

Samples and measures
In our applications, we drew on international IPD from
PISA (2000–2018) with over 400 independent student
samples from 92 countries or economic regions (total
N = 2,970,892 students; see Figure 1). To estimate the
various effect sizes, we used the PISA reading
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achievement scores that were provided as PVs. Further,
we used information on students' gender as obtained
from student questionnaires (0/1 = male/female stu-
dents). Finally, as a measure of students' SES, we applied
parents' highest occupational status (HISEI), which cor-
responds to the higher occupational status of either par-
ent or to the only available parent.15 Higher HISEI values
indicate higher SES.

Handling missing values
Data OSM.6 provides a detailed account of how we han-
dled the missing data. We briefly summarize the key
points here. Due to (unplanned) systematically missing
values on reading achievement or the SES index, we had
usable IPD from (a) 424 samples to estimate gender dif-
ferences and from (b) 422 samples to estimate the rela-
tionship between reading achievement and students' SES
and the interaction between gender and SES. Given that
we used PVs for reading achievement as the outcome, we
used a nested multiple imputation strategy combined
with the SMC-SM approach and imputed each of the
422 student sample data sets M = 10 times separately for
each PV using the raw data provided in the public use
files. To this end, we used the R package “mdmb” (ver-
sion 1.5.8).90 The imputation model for the SMC-SM
approach comprised a sequence of conditional models
that took into account the distribution of the variables to
be imputed (e.g., continuous distribution for reading
achievement) and the functional form for how these vari-
ables are interrelated (e.g., multilevel regression). For
example, the conditional (multilevel regression) model of
reading achievement contained gender, SES, the interac-
tion between gender and SES, as well as mathematics
achievement as predictors. Mathematics achievement
was used as an auxiliary variable‡ because of (a) the
small, albeit consistent gender differences found in this
achievement domain in many countries9 and (b) the con-
sistent relationships found between students' SES and
achievement.8 Finally, to account for the fact that stu-
dents were nested within schools, we added a random
intercept for schools to each conditional model.91 Of
note, we did not impute missing values for gender
because the mechanism underlying missing values on
gender may be MNAR, thus reflecting that students' gen-
der identity was not represented well by the binary
response format used in the PISA student question-
naire.§. In summary, the applied imputation model was
compatible with all regression model sets that we used to
estimate the target effect sizes.

Model sets to estimate effect sizes and their sampling
variances
To estimate the various effect sizes and their sampling
variances, we applied three sets of linear regression

models—Model Sets 1, 2, and 3—to the IPD of each stu-
dent sample (see, e.g., Figure 4). Further details on the
specification and interpretation of these models are pre-
sented in OSM.6. We highlight the most important
aspects of these analyses here. First, in all model sets, the
regression coefficients were estimated by using the final
weights, which implied that students with larger weights
had a larger influence on the values of the regression
parameters.27,28 Further, the sampling variances of all
effect sizes were estimated by using Fay BRR.66 Second,
we z-standardized the outcome variable (i.e., reading
achievement) and the continuous predictor variable
(i.e., the SES measure HISEI) with M = 0 and SD = 1 for
each multiply imputed data set as obtained for a certain
student sample.92 We did not z-standardize the indicator
variable for gender. The standardized regression coeffi-
cient for gender (βGender as obtained from Model Set 1)
therefore depicts gender differences as a standardized
mean difference (equivalent to d), with positive values
indicating that female students outperformed male stu-
dents. Third, using this z-standardization procedure
yielded a bivariate regression coefficient (βSES as obtained
from Model Set 2) that was identical in size and interpre-
tation to the correlation between reading achievement
and the SES index.92 Fourth, to examine how gender dif-
ferences in reading achievement were moderated by stu-
dents' SES, we specified Model Set 3, which included
gender, the z-standardized SES index, and a multiplica-
tive term between gender and the z-standardized SES
index to represent their interaction. The standardized
regression coefficient βGender�SES indicates how gender
differences in reading achievement (in terms of d) change
when students' SES increases by 1 (cycle- and country-
specific) SD (see Figure 4d). Finally, in accordance with
Burgess et al.'s88 recommendations, we computed the
(pooled) average effect size (e.g., βGender) and its sampling
variance (e.g., v βGender

� �
) for each model set across the

multiply imputed data sets as obtained for a certain stu-
dent sample (using the nested multiple imputation for-
mula; see OSM.5). These average effect sizes were then
used in Stage 2 of the IPD meta-analysis.

Software
There are several software packages that can be used to
take the methodological features of ELSAs into account
when estimating effect sizes and their sampling vari-
ances.93 We used the “survey” package (version 4.1.1)
that is implemented in the free software environment R
(version 4.1.1)94 because it is well-documented.28 Further,
it allows researchers to specify many different general-
ized linear models (e.g., linear, logistic, Poisson, or quan-
tile regression) to estimate effect sizes and their sampling
errors for a large variety of stratified multistage sampling
designs. Finally, using R allowed us to repeat the data
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analytic steps as required in Stage 1 for the IPD of each
sample from an ELSA, and it provided a versatile inter-
face to the applied meta-analytic models in Stage 2 of the
IPD meta-analysis.

5.2 | Stage 2: Integrating effect sizes and
analyzing their heterogeneity with meta-
analytic models

5.2.1 | Choosing a meta-analytic model

When integrating effect sizes resulting from descriptive
analyses with ELSAs in an IPD meta-analysis,
researchers should choose a meta-analytic model that
provides a good fit to (a) the inference population and
(b) the dependent structure and distributional form of
the observed effect sizes.

Inference populations in the fixed-effect model and
random-effects model
There are two popular statistical models—the fixed-effect
model (also known as the common-effect model) and the
random-effects model—which differ in their respective
inference populations.36,44 If the goal is to make infer-
ences about the effect size parameters only in the
observed set of ELSA samples, the fixed-effect model can
be applied. However, in this case, the meta-analyst
assumes that all observed effect sizes share a common
population value for the true effect size.36,44 Observed
variations between effect sizes are only expected due to
sampling errors as estimated by the sampling variances
of the observed effect sizes.36,44 As for ELSAs, this set of
assumptions seems most plausible when the effect sizes
to be integrated stem from direct or very close replication
studies using IPD from the same target population.44

Given these restrictions of the fixed-effect model, the
random-effects model will be a more plausible match for
most meta-analyses of descriptive analyses with IPD from
ELSAs.44 Specifically, the random-effects model allows
researchers to make inferences about a population of
studies from which the observed ELSA samples are con-
sidered to be a random (representative) sample.36,44 The
random-effects model therefore assumes that there is a
distribution of true effect sizes ϑ rather than a single true
common effect size. This assumption seems plausible, for
example, when the effect sizes to be integrated stem from
several cycles of an ELSA that draw on independent stu-
dent samples that were observed at different points in
historical time (e.g., several PISA cycles). The random-
effects model can also be applied to integrate the results
as obtained from related ELSAs (e.g., PISA and PIRLS)

that draw on different independent student samples and
that also differ in the materials that were used.44(p107)

Dependencies among observed effect sizes and their
distributional form
Statistical inferences from parameters in meta-analytic
models are based on some assumptions about the depen-
dencies among observed effect sizes and their distribu-
tional form.95,96 Standard meta-analytic models (e.g., the
two-level random-effects model) assume independent
effect sizes. Is this a reasonable assumption for IPD meta-
analyses of ELSAs? The two-level model can be used, for
example, to meta-analyze the descriptive analyses for a
certain outcome as obtained from several independent
samples in the same country7 or from independent stu-
dent samples in a single ELSA cycle,5 for example, when
a certain target variable is assessed in this cycle only. In
these examples, the effect sizes are based on independent
samples, and hence, the assumptions of the two-level
random-effects model apply. OSM.7 presents an applica-
tion of the two-level random-effects model for indepen-
dent student samples participating in a single PISA cycle
(i.e., PISA 2018).

However, in many applications of IPD meta-analyses
of ELSAs, the assumption of independent effect sizes
may be unrealistic. In particular, in international ELSAs
(e.g., PISA, TIMSS, PIRLS), independent student samples
participated in a certain cycle of an ELSA. Several such
samples were nested within countries (see Figure 2a).
The effect sizes within the same country can be expected
to be more similar to each other (e.g., because individuals
are educated in the same system) than to effect sizes from
other countries. Modeling these dependencies requires
researchers to account for the hierarchical structure of
the observed effect sizes in the meta-analytic model. To
this end, a model-based approach drawing on a three-
level meta-analytic model can be used.35,96,97

Importantly, following Pustejovsky and Tipton,98 we
recommend combining the model-based approach with
robust variance estimation (RVE)95 to adjust the sam-
pling variances and the 95% confidence intervals (95%
CIs) for the average true effect size and meta-regression
coefficients.** Doing so safeguards statistical inferences
against (a) violations of distributional assumptions,
(b) small sample bias when integrating effect sizes from a
small number of countries, (c) the misspecification of the
structure of the dependence of observed effect sizes, and
(d) the misspecification of the applied meta-analytic
model, for example, when using a mixed-effects meta-
regression model rather than a random-slope meta-
regression model.36,98 Moreover, using a model-based
approach in combination with RVE is a reasonable
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strategy when a meta-analyst cannot fully accommodate
the complex structure of the dependence of observed
effect sizes in a model-based approach (e.g., when com-
bining an IPD meta-analysis of ELSAs with an AD meta-
analysis). Finally, the sampling distribution for some
effect sizes (e.g., correlations or standardized regression
coefficients, such as βSES) might not be well approxi-
mated by a normal distribution unless the sample size is
very large.103 However, the standard assumption in meta-
analytic models is that the observed effect sizes are nor-
mally distributed (see Sections 5.2.2 and 5.2.4). In such
situations, RVE helps to reduce potential bias in the SEs
and confidence limits of the average true effect size and
meta-regression coefficients because it makes no assump-
tions about the specific form of the sampling distribu-
tions of the observed effect sizes.95,104

5.2.2 | Three-level random-effects model

Model specification
Accounting for the hierarchical dependency of effect
sizes as found in many ELSAs requires a three-level
random-effects model35 that involves three stages of sam-
pling (see Figure 2a). Given that sporadically missing
data are the rule (and not the exception) in ELSAs, we
illustrate this model for the observed, pooled effect sizes
Tct and their sampling variances v Tct

� �
that were

obtained (e.g., by means of [nested] multiple imputation)
for a certain sample in country c in cycle t. The first stage
(Level 1) of the sampling process assumes that the
observed effect sizes Tct estimate a true effect size ϑct with
some estimation error ect.

Tct ¼ ϑctþ ect ð1Þ

The second stage (Level 2) of the sampling process
assumes that the true effect sizes ϑct may vary around the
country-specific true mean effect size β0c. The deviation
of a certain true effect size ϑct is depicted by the random
effect uct.

ϑct ¼ β0cþuct ð2Þ

The third stage (Level 3) of the sampling process assumes
that the true country-specific mean effect sizes β0c may
vary around the (grand) true mean effect size γ00. The
deviation for a certain true country-specific mean effect
size from γ00 is depicted by the random effect u0c.

β0c ¼ γ00þu0c ð3Þ

When we combine Equations (1)–(3), the three-level
random-effects model can be written as35:

Tct ¼ γ00þu0cþuctþect: ð4Þ

In the three-level random-effects model, the sampling
errors ect and the random effects uct and u0c are assumed
to be uncorrelated within and across levels and to follow
normal distributions with means of zero and variances
v Tct
� �

, τ2Level 2, and τ2Level 3, respectively. Thus, three
sources of variation affect the distribution of observed
effect sizes: the variance of the sampling errors v Tct

� �
,

the variance of the true sample-specific effect sizes
around the mean true effect size within countries τ2Level 2
(which is assumed to be identical for all countries), and
the variance of the country-specific true mean effect
sizes around the average true effect size τ2Level 3. The total
variance of the true effect sizes is therefore τ2=
τ2Level 2þ τ2Level 3. When estimating the meta-analytic
parameters for the true effect sizes, an inverse-variance
weighting scheme is applied. The weights are based on
all three sources of variance, which also implies that
effect sizes that were estimated more precisely (as
reflected by v Tct

� �
) receive greater weight.35 The

computation of the weights requires estimates of the vari-
ances τ2Level 2 and τ2Level 3.

35 Veroniki et al.105 recom-
mended the restricted maximum likelihood estimator
(REML) to estimate these variances. Reliable 95% CIs can
then be obtained (a) by using the profile likelihood
method for variances or SDs105 and (b) by drawing on the
estimates of τ2Level 2 and τ2Level 3 with RVE for the average
true effect.98 Model convergence can be assessed with
profile likelihood plots (see OSM.8).106

Evaluation of the heterogeneity of effect sizes
The three-level random-effects model provides several
key meta-analytic parameters: the average true effect size
and the variance estimates for describing the heterogene-
ity of the true effect sizes in total as well as at Levels
2 and 3. There are several approaches that can be used to
assess the heterogeneity of effect sizes.107 First, the Q test
statistic is computed by summing the squared deviations
of each individual effect size estimate from the average
true effect estimate where individual effect sizes are
weighted by their sampling variance. A statistically sig-
nificant value of Q is typically taken to indicate effect size
heterogeneity.107 Second, the I2 statistic provides infor-
mation about the proportion of observed heterogeneity
that is real and not due to random noise and has a range
of 0%–100%.107 The Cochrane handbook for research syn-
theses108 offers guidelines that characterize I2 values
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falling in the intervals 30% ≤ I2 ≤ 60%, 50% ≤ I2 ≤ 90%,
and 75% ≤ I2 ≤ 100% as representing moderate, substan-
tial, and considerable heterogeneity. Notably, any evalua-
tion of the size of I2 should also take into account the
sign and size of the effect sizes as well as the precision
with which the heterogeneity could be estimated
(e.g., the p value from the Q test statistic). Moreover,
when using three-level random-effects models, the I2 sta-
tistic can be computed for each level separately with
I2Level 2 and I2Level 3 providing information about the pro-
portions of the total variance of the effect sizes that can
be explained by true effect size heterogeneity at Level
2 (e.g., between samples within countries) or Level 3 (e.-
g., between countries).97 Third, the 95% prediction inter-
val (95% PI) takes into account τ2 as well as the
uncertainty (i.e., the sampling variance) in estimating the
average true effect size.107 In doing so, the 95% PI gives a
hint about the variation in true effect sizes by providing a
plausible range of values in which the true effect sizes of
about 95% of all relevant populations will fall.

5.2.3 | Applications of the three-level
random-effects model

We applied three three-level random-effects models to
meta-analyze the (pooled) effect sizes βGender, βSES, and
βGender�SES as obtained from Model Sets 1, 2, and 3 (see
Figure 5) by using the R package “metafor” (version
3.0.2).106 We applied “metafor” because of its comprehen-
sive modeling capabilities.109 Further, we implemented
RVE by using the “clubSandwich” package (version
0.5.3).110

Meta-analyzing gender differences in reading
achievement
Our results (Table 1) indicated that, on average, female
students outperformed male students in reading with an
average estimated (true) effect size γ00 βGender

� �
= 0.37 SD

units across 92 countries (95% CI [0.35, 0.39]). This gen-
der difference in favor of 15-year-old female students is
slightly larger than the gender gap (d = 0.30) reported for
eighth-grade students in the United States.7 Assessing the
heterogeneity of effect sizes showed that gender differ-
ences in reading achievement varied substantially, Q
(df = 423) = 5878.4, p<0.001; I2 = 93.2%; 95% PI [0.13,
0.62], with larger variation observed between (τLevel 3
= 0.10) than within countries (τLevel 2 = 0.08). According
to the benchmark ranges that Hyde111 proposed for eval-
uating effect sizes for gender differences (negligible:
0.00< jdj≤ 0.10, small: 0.10< jdj≤ 0.35, moderate:
0.35< jdj≤ 0.65, large: 0.65< jdj≤ 1.00, and very large:

jdj>1.00), the average gender difference in reading
achievement can be considered moderate in size. The
95% PI (Figure 5a) indicates that about half of the gender
differences will likely be small, whereas the other half
will probably be moderate in size.

Meta-analyzing the relationship between reading
achievement and students' SES
Our results (Table 1) showed that the average (true) stan-
dardized regression coefficient between reading achieve-
ment and students' SES was γ00 βSES

� �
= 0.30 (95% CI

[0.29, 0.31]) across 96 countries. That is, on average, an
increase of 1 SD in the SES index was associated with an
increase of about 0.30 SD units in reading achievement.
A similar, yet slightly lower, relationship between read-
ing achievement and student SES was reported in Sirin's
meta-analysis8 for the United States (r = 0.27). Assessing
the heterogeneity of effect sizes showed that the relation-
ship between reading achievement and students' SES var-
ied substantially, Q (df = 422) = 4917.3, p<0.001;
I2 = 91.0%, with considerably larger variation observed
between (τLevel 3 = 0.06) than within countries (τLevel 2
= 0.03). The 95% PI ranged from 0.17 to 0.43 (Figure 5b),
which suggests that social inequality in reading achieve-
ment that is related to students' SES can be expected in
most countries and PISA cycles.

Meta-analyzing the interaction between gender
differences and students' SES
Our results (Table 1) showed that, on average, gender
differences in reading achievement were slightly moder-
ated by students' SES with γ00 βGender�SES

� �
= �0.018

(95% CI [�0.023, �0.013]). The interaction implies, for
example, that if students' SES is 2 SD units above the
mean, we would expect the gender gap in reading
achievement to be, on average, 0.036 SD units (i.e., about
10%) smaller than the average gender difference. Asses-
sing the heterogeneity of effect sizes showed that the
interaction terms βGender�SES varied significantly but only
to a moderate degree, Q(df = 422) = 481, p = 0.023;
I2 = 41.1%. All variation in the true effect sizes was
observed between countries (τLevel 3 = 0.02). The 95% PI
ranged from �0.05 to 0.02, emphasizing that true effect
sizes can be expected to be heterogeneous and not to
have the same sign or size in all student populations
(Figure 5c; see also, e.g., Figure 4d). Taken together,
these findings provide some support for an intersectional
effect14 by showing that students' gender and their SES
interact in explaining achievement differences in reading
achievement. However, our results also suggest that the
intersectional effect varies across countries. Of note, fur-
ther meta-regression analyses (see OSM.11) suggested
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that intersectionality effects may depend on the test
mode. In particular, intersectionality effects were
(on average) about �0.02 when a paper-pencil test of
reading achievement was used and about zero when a
computer-based assessment was used.

5.2.4 | Meta-regression

In the previous sections, we showed how to achieve one
key goal of IPD meta-analyses of ELSAs: assessing the
mean and the heterogeneity of the distribution of (true)
effect sizes. For example, we observed substantial hetero-
geneity in gender differences in reading achievement
within countries over time (i.e., across PISA cycles) and
between countries (Table 1 and Figures 5a and 6). A sec-
ond key goal of IPD meta-analyses of ELSAs is therefore
to better understand and explain this heterogeneity. To
this end, we illustrate how the three-level random-effects
model can be expanded into a mixed-effects meta-
regression model that is typically applied to examine
moderating effects.36,45 In particular, we used this model
to examine moderator variables that had the potential to
explain the heterogeneity in gender differences in reading
achievement (in terms of βGender; Model Set 1). OSM.10
and OSM.11 provide results on meta-regression models
for βSES and βGender�SES (i.e., Model Sets 2 and 3).

Expanding the three-level random-effects model into a
meta-regression model
Drawing on IPD from ELSAs from the United States, pre-
vious meta-analytic research found no significant change
in gender differences in reading achievement between
1960 and 19946 or between 1988 and 2015.7 To investigate
the generalizability of these results to 92 countries, we
analyzed the change in gender differences in reading
achievement over time (Timect was specified as a continu-
ous variable at Level 2 and coded 0/3/6 etc. indicating
the 2000/2003/2006 etc. cycles of PISA). Further, reading
achievement was measured with paper-pencil tests in
PISA 2000 to 2012, whereas computer-based assessments
were applied in PISA 2015 and 2018. Meta-analytic
research showed that the test mode (paper-pencil test
vs. computer-based assessment) has no significant effect
on reading achievement test performance.113 Accord-
ingly, gender differences in reading achievement are not
expected to change when the test mode changes. To test
this hypothesis, we examined the extent to which gender
differences were moderated by test administration mode
(Modect was located at Level 2 and coded 0 = paper-
pencil test if Timect ≤ 12, 1 = computer-based assessment
if Timect > 12). Finally, a key goal of educational policies
in OECD countries is to reduce educational disparities
between male and female students.112(p142) We therefore
examined the extent to which (a) the magnitude of gen-
der differences and (b) the development of gender differ-
ences over time were moderated by a country's OECD
membership (OECDc was located at Level 3 and coded
0 = other countries, 1 = OECD country). Notably, the
assumption that the development of gender differences

FIGURE 5 Distribution of pooled effect sizes: (a) Gender

differences in reading achievement (βGender as obtained from Model

Set 1), (b) relationship between reading achievement and students'

socioeconomic status (SES) (βSES as obtained from Model Set 2),

and (c) relationship between reading achievement and the

interaction between gender and SES (βGender�SES as obtained from

Model Set 3). The dots represent the observed, pooled effect sizes;

the diamond the true average effect size (vertical line through the

vertical points of the diamond) and the 95% CIs (horizontal points

of the diamond); and the error bars the 95% PIs as obtained from

three-level random-effects models
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may depend on OECD membership is depicted by a so-
called cross-level interaction between Timect (a Level
2 variable) and OECDc (a Level 3 variable).

The present moderator analyses exemplify a typical
challenge that many meta-analysts have to face. Specif-
ically, time and mode of test administration were con-
founded (i.e., Modect = 0 if Timect ≤ 12 and Modect = 1
if Timect > 12). To account for the (potential)

confounding of moderator variables, it is recommended
that meta-regression models that include multiple mod-
erator variables be run.23,45,114 Following this advice,
we specified a mixed-effects meta-regression model that
included Timect and Modect (both of which may vary
within and between countries) as moderator variables
to explain the heterogeneity in observed effect sizes at
Level 2.35

TABLE 1 Three-level meta-analytic models to integrate reading achievement's relationships with gender (Model Set 1) and students'

SES (Model Set 2) and their interaction (Model Set 3)

Meta-analytic statistics

Model Set 1 Model Set 2 Model Set 3

βGender βSES βGender�SES

Ncountries 92 92 92

k 424 422 422

kcountry

Min 1 1 1

Mdn 5 5 5

Max 7 7 7

γ00 0.37 0.30 �0.018

[95% CI] [0.35, 0.39] [0.29, 0.31] [�0.023, �0.013]

95% PI [0.13, 0.62] [0.17, 0.43] [�0.052, 0.017]

Q

value 5878.4 4917.3 481.0

df 423 421 421

p <0.001 <0.001 0.023

τ2 0.016 0.004 0.0003

[95% CI] [0.012, 0.020] [0.0033, 0.006] [0.0002, 0.0005]

τ2Level 2 0.006 0.0007 0.0000

[95% CI] [0.005, 0.007] [0.0005, 0.0009] [0.0000, 0.0001]

τ2Level 3 0.010 0.004 0.0003

[95% CI] [0.007, 0.014] [0.003, 0.005] [0.0001, 0.0005]

τ 0.125 0.066 0.017

[95% CI] [0.112, 0.141] [0.058, 0.077] [0.016, 0.023]

τLevel 2 0.075 0.026 0.000

[95% CI] [0.068, 0.082] [0.023, 0.030] [0.000, 0.012]

τLevel 3 0.100 0.061 0.017

[95% CI] [0.084, 0.120] [0.052, 0.072] [0.011, 0.023]

I2 93.2% 91.0% 41.1%

I2Level 2 33.5% 13.9% 0.0%

I2Level 3 59.8% 77.1% 41.1%

Note: The table shows the meta-analytic results from integrating the standardized effect sizes that were obtained from using Model Sets 1, 2, and 3. The
specification of the model sets is shown in Figure 4. Ncountries = number of countries (i.e., Level 3 units). k = total number of effect sizes. kcountry = number of

effect sizes per country (i.e., Level 2 units). γ00 = estimated average true effect size with 95% confidence interval. τ2,τ2Level 2,τ
2
Level 3 = estimated variances of true

effect sizes with 95% confidence intervals: total, within countries, between countries. τ,τLevel 2,τLevel 3 = estimated SDs of true effect sizes with 95% confidence
intervals: total, within countries, between countries. I2, I2Level 2, I

2
Level 3 = proportion of variance due to true effect sizes to total variance: total, within

countries, between countries.
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βGender,ct ¼ β0cþβ1c �Timectþβ2c �Modectþuctþect ð5Þ

Further, OECDc (which may vary between but not within
countries) was expected to moderate the magnitude of
gender differences in reading achievement. To probe this
prediction, OECDc was used as a moderator variable to
explain the variability in β0c among true effect sizes
between countries.

β0c ¼ γ00þ γ01 �OECDcþu0c ð6Þ

Of note, Equation (6) contains a random effect u0c to
allow true (average) gender differences in reading
achievement to vary between countries while controlling
for countries' OECD membership. Further, OECDc was
also expected to moderate the development of gender dif-
ferences in reading achievement across time as depicted
by β1c.

β1c ¼ γ10þ γ11 �OECDc ð7Þ

Because we specified a mixed-effects meta-regression
model (rather than a random-slope model), Equation (7)
contains no random effects when explaining β1c.

35 This
implies that β1c is assumed to be either identical for all
countries (i.e., γ11 = 0) or that β1c can be fully explained
by countries' OECD membership. Finally, we had no
expectations that the relationship between Modect and
the observed effect size would depend on moderator vari-
ables or that it might vary between countries. As we spec-
ified a mixed-effects model, β2c was therefore assumed to
be the same for all countries.

β2c ¼ γ20 ð8Þ

Combining Equations (5)–(8) yields a three-level mixed-
effects meta-regression model.

βGender,ct ¼ γ00þ γ01 �OECDcþu0c
þ γ10þ γ11 �OECDcð Þ �Timectþ γ20 �Modectþuct
þect

ð9Þ

FIGURE 6 Country-specific development of gender differences in reading achievement (βGender) across Programme for International

Student Assessment (PISA) cycles for OECD and other countries. Each dot represents a pooled effect size βGender,ct
� �

. The lines connect effect

sizes as obtained for independent student samples participating in a certain cycle t within the same country c. OECD countries were defined

as those countries that were members of the OECD as of the year 2000.112(p13) The triangles indicate the median value of the observed effect

sizes as obtained for a certain PISA cycle and the group of OECD or other countries.
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This meta-regression model draws on the same set of
assumptions about the error terms (ect) and the residual
random effects (u0c and uct) as the three-level random-
effects model with the variance τ2Res:Level 2 depicting
(residual) heterogeneity within countries and τ2Res:Level 3
between countries.35 Pseudo R2s can be computed to
quantify the proportion of variance accounted for at each
level by the meta-regression model: P2Level 2 and P2Level 3
depict the proportion of the total variance in true effect
sizes (as estimated by the three-level random-effects
model without moderator variables, see Table 1)
explained by the moderator variables within and between
countries.36

P2
Level 2 ¼ bτ2Level 2�bτ2Res:Level 2

� �
=bτ2Level 2 ð10Þ

P2
Level 3 ¼ bτ2Level 3�bτ2Res:Level 3

� �
=bτ2Level 3 ð11Þ

To estimate the parameters in the meta-regression model,
we used the same methods as for the three-level random-
effects model (i.e., REML in combination with RVE). The
interpretation of the parameters in the meta-regression is
equivalent to the regression parameters in multilevel
models.57 Thus, the intercept γ00 βGender

� �
= 0.37 (95% CI

[0.33, 0.42]) represents the estimated average (true) gen-
der differences in reading achievement for the year
2000 cycle as measured for a paper-pencil test in coun-
tries that were not members of the OECD. Further, γ10
= 0.007 indicates that, on average, gender differences in
reading achievement have widened in favor of girls at
0.007 SD per year (95% CI [0.004, 0.010]) in non-OECD
countries. This implies, for example, that gender differ-
ences in these countries have increased (on average) by
about 0.07 SD per decade (i.e., 0.007 SD/year � 10 years).
Moreover, γ20=�0.16 (95% CI [�0.19, �0.13]) indicates
that the gap in reading achievement between male and
female students narrowed, on average, by 0.16 SD when
a computer-based assessment was used instead of a
paper-pencil test. Hence, this result suggests that the test
mode may affect female and male students' performance
on reading achievement tests differently. Finally, γ01 rep-
resents the mean differences in the magnitude of gender
differences in reading achievement between OECD and
other countries, whereas γ11 depicts how changes in gen-
der differences over time depend on a country's OECD
membership. Thus, γ01 = �0.03 (95% CI [�0.08, 0.02])
and γ11 = �0.001 (95% CI [�0.003, 0.001]) indicate that
gender differences in reading achievement as well as
their development over time did not differ substantially
(or significantly) between OECD and non-OECD
countries.

Further analyses of the residual variances showed
that the meta-regression model did not fully account for
the heterogeneity of effect sizes between countries
(τ2Res:Level 3 = 0.011; 95% CI [0.008, 0.015]) or within coun-
tries (τ2Res:Level 2 = 0.003; 95% CI [0.002, 0.003]). This con-
clusion was corroborated by the Q statistic, which
indicated a significant amount of residual heterogeneity,
Q(df = 419) = 4777.1, p<0.001. Finally, P2Level 2 = 0.55
indicates that Time, Mode, and OECD jointly explained
55% of the variance in true effects sizes within countries,
whereas P2Level 3 = �0.09 (truncated to 0) indicates that
OECD membership explained no variance in effect sizes
between countries.

Potential issues in meta-regression analyses and
suggested solutions
When using the meta-regression approach with hierar-
chically dependent effect sizes, several issues may occur.
First, all problems that are well-documented for regres-
sion analyses in single or multilevel contexts may also
occur in meta-regression models. These include outliers
in the effect sizes that may exert a strong influence on
the results or the multicollinearity of the moderator vari-
ables that may lead to unreliable sampling variances for
the regression coefficients.36,115 Viechtbauer and
Cheung116 developed diagnostic tools that can be used to
examine outliers and influential effect sizes. Further,
inspecting the correlations among the moderator vari-
ables and excluding some highly correlated predictors
may help to mitigate the problem of multicollinearity.36

Second, using a mixed-effects model to perform a meta-
regression has the limitation that moderating effects cannot
be specified to vary between countries. This limitation can
be addressed by adding random effects to the corresponding
meta-regression coefficients. For example, one could add a
random effect to Equations (7)–(9) to depict the assumption
that OECD membership does not fully explain between-
country variation in how gender differences change over
time. Doing so changes the mixed-effects model into a
random-slope model.35 Importantly, some scholars57 rec-
ommend that random-slope models be used when investi-
gating cross-level interactions (e.g., the cross-level
interaction between OECD and Time) to allow for valid sta-
tistical inferences. When we introduced a random slope for
Time, however, the corresponding variance component was
estimated to be very close to zero (see OSM.9). This result
suggests that the rate of change in gender differences in
reading achievement did not differ between countries when
controlling for a country's OECD membership. We there-
fore followed Raudenbush and Bryk's58(p28) advice and
based our conclusions on the more parsimonious mixed-
effects model. Importantly, we embedded our analyses in
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the RVE framework, which safeguards the statistical infer-
ences for the meta-regression coefficients against model
misspecification, for example, when using a mixed-effects
rather than a random-slope meta-regression model.98

Third, when conducting meta-regression analyses,
(unplanned) systematically missing data may occur for the
effect sizes (e.g., when a country did not participate in a
certain PISA cycle) or the moderator variables (e.g., when
information about a certain gender equality factor is not
available for a certain country or cycle). In our empirical
examples, the number of observed effect sizes varied
between countries (see Table 1), which implies that some
countries had systematically missing data on effect sizes in
one or more PISA cycles. Notably, the meta-regression
extension of the three-level random-effects model esti-
mates the meta-regression coefficients and their sampling
variances under the assumption that the underlying miss-
ingness mechanism is MAR or MCAR.57 This is a plausi-
ble assumption for ELSAs when data cannot be
suppressed, particularly for political reasons. For example,
in PISA, countries can generally only withhold certain
variables (but not all their data) when the information
contained in these variables would threaten the confiden-
tiality and anonymity of individuals (e.g., students or
teachers).15 However, the technical standards in PISA do
not allow variables to be withheld to avoid “inconvenient”
results (e.g., large gender differences in reading achieve-
ment). Further, we observed no missing data on the mod-
erator variables. When moderator variables are missing
systematically (assuming MCAR or MAR) at the cycle or
country level, (multilevel) multiple imputation approaches
can be applied.60,77 To this end, the available information
on (a) effect sizes and (b) moderator variables at the cycle
and country level can be used. Notably, following Pigott
and Polanin23 we do not recommend imputing systemati-
cally missing effect sizes by using moderator variables at
the cycle or country level (e.g., imputing missing effect
sizes for gender differences in reading achievement when
a country participated in some but not all PISA cycles or
for countries that never participated in PISA).

6 | GENERAL DISCUSSION

6.1 | Research opportunities with IPD
meta-analyses of ELSAs

IPD meta-analyses of studies with complex survey
designs offer a powerful way to study the consistency,
replicability, and generalizability of socially important
or theoretically interesting phenomena and trends.
More specifically, we see two major research opportuni-
ties for how IPD meta-analyses of ELSAs may substan-
tially contribute to cumulative knowledge, particularly

in the behavioral and social sciences. First, one of the
founding fathers of the meta-analytic enterprise, Gene
Glass, envisioned that “[m]eta-analysis needs to be
replaced by archives of raw data that permit the con-
struction of complex data landscapes that depict the
relationships among independent, dependent, and medi-
ating variables”.117(p230) The present paper directly
responds to Glass' call. IPD meta-analyses of ELSAs
allow researchers to draw such “landscapes” for impor-
tant policy-relevant subgroups, for example, by focusing
descriptive analyses on socially disadvantaged minority
students or students at the lowest or highest points on
the achievement distribution.9 Further, by using a stan-
dardized protocol to manage and analyze the data, we
illustrated one key strength of IPD meta-analyses,
namely, the capability to investigate how individual
characteristics at the participant level may moderate
the magnitude of effect sizes (which is usually not pos-
sible with AD meta-analyses, e.g., due to a lack of
reported information). Questions about how outcome
relationships are moderated by individuals' characteris-
tics are highly relevant in the behavioral and social sci-
ences, for example, in quantitative research on
intersectionality14 where one of our empirical examples
was located, in the context of aptitude treatment inter-
actions to adapt teaching to learners' characteristics,118

or research on individual differences in environmental
sensitivity (e.g., parenting).119 To address such ques-
tions, the two-stage approach we presented can be
expanded to meta-analyze effect sizes that are estimated
with more complex models, such as generalized linear
models,27,28 structural equation models,120 or multilevel
models.56 However, given their nonexperimental design,
the results of IPD meta-analyses of ELSAs, do not allow
conclusions to be drawn about causality.121 Neverthe-
less, they may help improve our understanding of
causal relationships (e.g., when a postulated cause does
not show the expected effect) or point to important
moderating effects that can be tested in subsequent
experimental studies.1

Second, the evidence base and consequently the
reach of systematic reviews on many key research
topics can be substantially enriched by combining tradi-
tional AD meta-analyses with IPD meta-analyses of
ELSAs.122 Currently, researchers in the behavioral and
social sciences use AD meta-analyses to statistically
integrate findings from systematic reviews.123 However,
the way such systematic reviews are currently con-
ducted, it seems unrealistic to expect them to cover the
complete evidence base. For example, most systematic
reviews are based on publications in English and are
thereby missing publications in other languages.124 Fur-
ther, the search for unpublished (gray) literature is
labor-intensive and must be stopped at some point in
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light of limited time and financial resources.125 Thus, it
is highly plausible that there is empirical evidence that
cannot be identified via standard search practices. For
instance, the literature search for the systematic review
of the AD meta-analysis by Barroso et al.126 on the rela-
tionship between anxiety and achievement in mathe-
matics identified effect sizes from 332 samples (total
N > 385,000 individuals). Yet, the search missed 59 out
of 65 samples from the PISA 2012 cycle and 2 samples
from the PISA 2003 cycle, which contained data from
about 465,000 students.126 To sum up, adding evidence
from IPD meta-analyses of ELSAs to AD meta-analyses
will likely help to substantially improve the reliability
of meta-analytic knowledge (because parameters can be
estimated more precisely) and to draw more nuanced
conclusions in systematic reviews in the behavioral and
social sciences. For example, integrating the results
obtained from IPD meta-analyses of ELSAs and AD
meta-analyses creates the opportunity to probe whether
the results are moderated by quality characteristics of
the samples (e.g., convenience samples vs. probability
samples in ELSAs).

6.2 | Where to look for further
methodological guidance

To tailor the two-stage approach to the complexities of
ELSAs, we focused on typical challenges that meta-
analysts have to face in the parts of Stages 1 and 2 devoted
to analyses. Setting this focus, our tutorial does not elabo-
rate on the challenges that exist before and after an IPD
meta-analysis of an ELSA is carried out. In particular,
important further steps that need to be considered to
carry out an IPD meta-analysis involve planning and
preregistration,127 computing a statistical power
analysis,128 and locating the studies from which the IPD
are to be retrieved.9,125 Further, we did not discuss how
to set the inclusion or exclusion criteria for selecting
among the identified studies,4 to harmonize measures
across studies,4,40 to assess the problem of publication
bias,129 or to apply the relevant reporting standards
(PRISMA-IPD).130 Moreover, further guidance on meta-
analyzing a smaller number of effect sizes or countries in
addition to the ones discussed here (RVE and model-
based approaches)98 can be found in Konstantopoulos35

and Bender et al.99

6.3 | Conclusion

The present tutorial introduced the two-stage IPD meta-
analysis approach, which we tailored to the methodologi-
cal challenges of studies with complex survey designs,

such as ELSAs. A two-stage IPD meta-analysis can be
flexibly applied to tackle (typical) meta-analytic research
objectives when synthesizing empirical evidence from
descriptive analyses. The guidance offered in this paper
can be helpful for synthesizing research evidence from
complex surveys and panel studies in the behavioral,
social, economic, educational and health sciences. IPD
meta-analyses of studies with complex survey designs
have (a) the potential to significantly enrich the extant
body of knowledge with reliable and widely generalizable
evidence for socially important or theoretically interest-
ing phenomena and trends, and (b) open up new and
unique research opportunities to synthesize evidence.
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ENDNOTES

* This also became evident from a literature review in which we
searched the ERIC and PsycINFO databases for records that were
relevant to four major ELSA programs: NAEP, PISA, TIMSS, and
PIRLS. Our review showed that only 59 out of 15,923 identified
records (0.4%) relevant to these ELSAs were classified as meta-
analyses (for details, see OSM.1). Given that we focused on four
major ELSA programs, this result provides a plausible estimate of
the application of meta-analytic models to results from ELSAs.

† For some types of analyses, the final weights are linearly trans-
formed to obtain different sets of weights.67 Normalized weights
(also called house weights) are transformed such that the sum of
the weights is equal to the sample size. Normalized weights are
often used in structural equation modeling.68 Further, for some
research questions, it is of interest to obtain pooled results by
using a single data set encompassing the IPD from all samples
(e.g., all country-specific samples) where each sample contributes
equally to the pooled results. To this end, so-called Senate weights
are computed by using a linear transformation of the final weights
to ensure that the sum of the Senate weights equals a constant
(say 500) in each sample.67 Notably, these linear transformations
of the final weights do not affect the values obtained for effect
sizes as applied in the two-stage IPD meta-analyses when the IPD
for each sample are analyzed separately.

‡ Mathematics achievement was used as an auxiliary variable for
multiple imputations in PISA cycles 2003–2018. In PISA 2000, the
proportion of missing values on the mathematics achievement
variable was too high for it to serve as an auxiliary variable.

§ There is no consensus on how best to handle missing data on
binary measures that are aimed at capturing multidimensional
constructs, such as gender. Further, in PISA, the amount of miss-
ing data on gender was very small (the largest sample-specific per-
centage was 2.6% for Canada in PISA 2003). When there are so
few missing data, the applied procedure for missing data on gen-
der (i.e., listwise deletion) may be a reasonable option for han-
dling missing data.62(p554) An alternative approach is to use a
multiple imputation strategy to impute missing data on gender,
assuming that these missing data are MCAR or MAR. We com-
pared the results obtained from using both missing data
approaches in the three countries with the largest amount of
missing data on gender. The two approaches yielded very similar
results for the effect sizes and their SEs.

** RVE shares vital statistical characteristics with the widely recom-
mended99,100 Hartung–Knapp–Sidik–Jonkman method101,102 for
two-level random-effects meta-analysis.95 However, RVE makes

less stringent assumptions about the weights for estimating the
SEs for meta-analytic averages or meta-regression coefficients95

and can easily be extended to safeguard statistical inferences for
meta-analytic models with three levels or even more complex
random-effects structures.98

REFERENCES
1. Loeb S, Dynarski S, McFarland D, Morris P, Reardon S,

Reber S. Descriptive Analysis in Education: A Guide for
Researchers. (NCEE 2017–4023). Institute of Education Sci-
ences; 2017.

2. Naemi B, Gonzales E, Bertling J, et al. Large-scale group score
assessments: past, present, and future. In: Saklofske DH,
Reynolds CR, Schwean VL, eds. The Oxford Handbook of
Child Psychological Assessment. Oxford Library of Psychology,
Oxford University Press; 2013. doi:10.1093/oxfordhb/
9780199796304.013.0006

3. Riley RD, Lambert PC, Abo-Zaid G. Meta-analysis of individ-
ual participant data: rationale, conduct, and reporting. BMJ.
2010;340:c221. doi:10.1136/bmj.c221

4. Rao SR, Graubard BI, Schmid CH, et al. Meta-analysis of sur-
vey data: application to health services research. Health Serv
Outcomes Res Methodol. 2008;8(2):98-114. doi:10.1007/s10742-
008-0032-0

5. Else-Quest NM, Hyde JS, Linn MC. Cross-national patterns of
gender differences in mathematics: a meta-analysis. Psychol
Bull. 2010;136:103-127.

6. Nowell A, Hedges LV. Trends in gender differences in academic
achievement from 1960 to 1994: an analysis of differences in
mean, variance, and extreme scores. Sex Roles. 1998;39:21-43.

7. Reilly D, Neumann DL, Andrews G. Gender differences in
reading and writing achievement: evidence from the National
Assessment of Educational Progress (NAEP). Am Psychol.
2019;74(4):445-458. doi:10.1037/amp0000356

8. Sirin SR. Socioeconomic status and academic achievement: a
meta-analytic review of research. Rev Educ Res. 2005;75:417-453.

9. Keller LK, Preckel F, Eccles JS, Brunner M. Top-performing
math students in 82 countries: an integrative data analysis of
gender differences in achievement, achievement profiles, and
achievement motivation. J Educ Psychol. 2022;114(5):966-991.
doi:10.1037/edu0000685

10. Keller LK, Preckel F, Brunner M. Nonlinear relations between
achievement and academic self-concepts in elementary and sec-
ondary school: an integrative data analysis across 13 countries.
J Educ Psychol. 2021;113(3):585-604. doi:10.1037/edu0000533

11. Blömeke S, Nilsen T, Scherer R. School innovativeness is asso-
ciated with enhanced teacher collaboration, innovative class-
room practices, and job satisfaction. J Educ Psychol. 2021;113
(8):1645-1667. doi:10.1037/edu0000668

12. Guo J, Hu X, Marsh HW, Pekrun R. Relations of epistemic
beliefs with motivation, achievement, and aspirations in sci-
ence: generalizability across 72 societies. J Educ Psychol. 2022;
114(4):734-751. doi:10.1037/edu0000660

13. Marsh HW. Cross-cultural generalizability of year in school
effects: negative effects of acceleration and positive effects of
retention on academic self-concept. J Educ Psychol. 2016;
108(2):256-273. doi:10.1037/edu0000059

BRUNNER ET AL. 27

https://orcid.org/0000-0001-7182-5622
https://orcid.org/0000-0001-7182-5622
https://orcid.org/0000-0002-3242-0208
https://orcid.org/0000-0002-3242-0208
https://orcid.org/0000-0002-4433-2600
https://orcid.org/0000-0002-4433-2600
https://orcid.org/0000-0002-4433-2600
https://orcid.org/0000-0002-2884-2061
https://orcid.org/0000-0002-2884-2061
https://orcid.org/0000-0002-2884-2061
https://orcid.org/0000-0002-4945-2388
https://orcid.org/0000-0002-4945-2388
https://orcid.org/0000-0002-7531-0631
https://orcid.org/0000-0002-7531-0631
info:doi/10.1093/oxfordhb/9780199796304.013.0006
info:doi/10.1093/oxfordhb/9780199796304.013.0006
info:doi/10.1136/bmj.c221
info:doi/10.1007/s10742-008-0032-0
info:doi/10.1007/s10742-008-0032-0
info:doi/10.1037/amp0000356
info:doi/10.1037/edu0000685
info:doi/10.1037/edu0000533
info:doi/10.1037/edu0000668
info:doi/10.1037/edu0000660
info:doi/10.1037/edu0000059


14. Else-Quest NM, Hyde JS. Intersectionality in quantitative psy-
chological research: II. Methods and techniques. Psychol
Women Q. 2016;40(3):319-336. doi:10.1177/0361684316647953

15. OECD. PISA 2015. Technical Report. OECD; 2017.
16. Rutkowski L, von Davier M, Rutkowski D, eds. Handbook of

International Large-Scale Assessment Background, Technical
Issues, and Methods of Data Analysis. CRC Press; 2014.

17. Findley MG, Kikuta K, Denly M. External validity. Annu Rev
Polit Sci. 2021;24(1):365-393. doi:10.1146/annurev-polisci-
041719-102556

18. Shadish WR, Cook TD, Campbell DT. Experimental and
Quasi-Experimental Designs for Generalized Causal Inference.
Houghton Mifflin Company; 2002.

19. Kelley K, Preacher KJ. On effect size. Psychol Methods. 2012;
17(2):137-152. doi:10.1037/a0028086

20. National Academies of Sciences, Engineering, and Medicine.
Reproducibility and Replicability in Science. Vol 25303.
National Academies Press; 2019. doi:10.17226/25303

21. Simmonds M, Stewart G, Stewart L. A decade of individual
participant data meta-analyses: a review of current practice.
Contemp Clin Trials. 2015;45:76-83. doi:10.1016/j.cct.2015.
06.012

22. Ahn S, Ames AJ, Myers ND. A review of meta-analyses in
education: methodological strengths and weaknesses. Rev
Educ Res. 2012;82(4):436-476. doi:10.3102/0034654312458162

23. Pigott TD, Polanin JR. Methodological guidance paper: high-
quality meta-analysis in a systematic review. Rev Educ Res.
2020;90(1):24-46. doi:10.3102/0034654319877153

24. Tierney JF, Stewart LA, Clarke M. Chapter 26: Individual par-
ticipant data. In: Higgins JPT, Thomas J, Chandler J, et al.,
eds. Cochrane Handbook for Systematic Reviews of Interven-
tions. Cochrane; 2021 www.training.cochrane.org/handbook

25. Debray TPA, Moons KGM, van Valkenhoef G, et al. Get real
in individual participant data (IPD) meta-analysis: a review of
the methodology. Res Synth Methods. 2015;6(4):293-309. doi:
10.1002/jrsm.1160

26. Gray H, Lyth A, McKenna C, Stothard S, Tymms P,
Copping L. Sex differences in variability across nations in
reading, mathematics and science: a meta-analytic extension
of Baye and Monseur (2016). Large-Scale Assess Educ. 2019;
7(1):2. doi:10.1186/s40536-019-0070-9

27. Heeringa S, West BT, Berglund PA. Applied Survey Data Anal-
ysis. Taylor & Francis; 2010.

28. Lumley T. Complex Surveys: A Guide to Analysis Using R. John
Wiley; 2010.

29. Valliant R, Dever JA, Kreuter F. Practical Tools for Designing
and Weighting Survey Samples. 2nd ed. Springer; 2018.

30. Riley RD, Tierney JF, Stewart LA, eds. Individual Participant
Data Meta-Analysis: A Handbook for Healthcare Research.
Wiley; 2021.

31. Burke DL, Ensor J, Riley RD. Meta-analysis using individual
participant data: one-stage and two-stage approaches, and
why they may differ. Stat Med. 2017;36(5):855-875. doi:10.
1002/sim.7141

32. Morris TP, Fisher DJ, Kenward MG, Carpenter JR. Meta-
analysis of Gaussian individual patient data: two-stage or not
two-stage? Stat Med. 2018;37(9):1419-1438. doi:10.1002/sim.
7589

33. Cooper HM, Hedges LV, Valentine JC. The Handbook of
Research Synthesis and Meta-Analysis. 3rd ed. Russel Sage
Foundation; 2019.

34. Siddaway AP, Wood AM, Hedges LV. How to do a systematic
review: a best practice guide for conducting and reporting nar-
rative reviews, meta-analyses, and meta-syntheses. Annu
Rev Psychol. 2019;70(1):747-770. doi:10.1146/annurev-psych-
010418-102803

35. Konstantopoulos S. Fixed effects and variance components
estimation in three-level meta-analysis. Res Synth Methods.
2011;2(1):61-76. doi:10.1002/jrsm.35

36. Konstantopoulos S, Hedges LV. Statistically analyzing effect
sizes: fixed- and random-effects models. In: Cooper HM,
Hedges LV, Valentine JC, eds. Handbook of Research Synthesis
and Meta-Analysis. 3rd ed. Russell Sage Foundation; 2019:
245-280.

37. Riley RD, Burke DL, Morris T. One-stage versus two-stage
approach to IPD meta-analysis: differences and recommenda-
tions. In: Riley RD, Tierney JF, Stewart LA, eds. Individual
Participant Data Meta-Analysis: A Handbook for Healthcare
Research. Wiley Series in Statistics in Practice. Wiley; 2021:
199-217.

38. Belias M, Rovers MM, Reitsma JB, Debray TPA, IntHout J.
Statistical approaches to identify subgroups in meta-
analysis of individual participant data: a simulation study.
BMC Med Res Methodol. 2019;19(1):183. doi:10.1186/s12874-
019-0817-6

39. Nevitt SJ, Marson AG, Davie B, Reynolds S, Williams L,
Smith CT. Exploring changes over time and characteristics
associated with data retrieval across individual participant
data meta-analyses: systematic review. BMJ. 2017;357:j1390.
doi:10.1136/bmj.j1390

40. Hussong AM, Curran PJ, Bauer DJ. Integrative data analysis
in clinical psychology research. Annu Rev Clin Psychol. 2013;
9(1):61-89. doi:10.1146/annurev-clinpsy-050212-185522

41. Siddique J, de Chavez PJ, Howe G, Cruden G, Brown CH.
Limitations in using multiple imputation to harmonize indi-
vidual participant data for meta-analysis. Prev Sci. 2018;19(1):
95-108. doi:10.1007/s11121-017-0760-x

42. Cheung MWL, Jak S. Analyzing big data in psychology: a spli-
t/analyze/meta-analyze approach. Front Psychol. 2016;7. doi:
10.3389/fpsyg.2016.00738

43. Hedges LV. What are effect sizes and why do we need them.
Child Dev Perspect. 2008;2(3):167-171. doi:10.1111/j.1750-8606.
2008.00060.x

44. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. A basic
introduction to fixed-effect and random-effects models for
meta-analysis. Res Synth Methods. 2010;1(2):97-111. doi:10.
1002/jrsm.12

45. Tipton E, Pustejovsky JE, Ahmadi H. A history of meta-
regression: technical, conceptual, and practical developments
between 1974 and 2018. Res Synth Methods. 2019;10(2):161-
179. doi:10.1002/jrsm.1338

46. Robinson WS. Ecological correlations and the behavior of
individuals. Am Sociol Rev. 1950;15:351-357.

47. Thompson SG, Higgins JPT. How should meta-regression ana-
lyses be undertaken and interpreted? Stat Med. 2002;21(11):
1559-1573. doi:10.1002/sim.1187

48. Riley RD, Debray TPA, Fisher D, et al. Individual participant
data meta-analysis to examine interactions between treatment
effect and participant-level covariates: statistical recommenda-
tions for conduct and planning. Stat Med. 2020;39(15):2115-
2137. doi:10.1002/sim.8516

28 BRUNNER ET AL.

info:doi/10.1177/0361684316647953
info:doi/10.1146/annurev-polisci-041719-102556
info:doi/10.1146/annurev-polisci-041719-102556
info:doi/10.1037/a0028086
info:doi/10.17226/25303
info:doi/10.1016/j.cct.2015.06.012
info:doi/10.1016/j.cct.2015.06.012
info:doi/10.3102/0034654312458162
info:doi/10.3102/0034654319877153
http://www.training.cochrane.org/handbook
info:doi/10.1002/jrsm.1160
info:doi/10.1186/s40536-019-0070-9
info:doi/10.1002/sim.7141
info:doi/10.1002/sim.7141
info:doi/10.1002/sim.7589
info:doi/10.1002/sim.7589
info:doi/10.1146/annurev-psych-010418-102803
info:doi/10.1146/annurev-psych-010418-102803
info:doi/10.1002/jrsm.35
info:doi/10.1186/s12874-019-0817-6
info:doi/10.1186/s12874-019-0817-6
info:doi/10.1136/bmj.j1390
info:doi/10.1146/annurev-clinpsy-050212-185522
info:doi/10.1007/s11121-017-0760-x
info:doi/10.3389/fpsyg.2016.00738
info:doi/10.1111/j.1750-8606.2008.00060.x
info:doi/10.1111/j.1750-8606.2008.00060.x
info:doi/10.1002/jrsm.12
info:doi/10.1002/jrsm.12
info:doi/10.1002/jrsm.1338
info:doi/10.1002/sim.1187
info:doi/10.1002/sim.8516


49. Fisher DJ, Carpenter JR, Morris TP, Freeman SC, Tierney JF.
Meta-analytical methods to identify who benefits most from
treatments: daft, deluded, or deft approach? BMJ. 2017;356:
j573. doi:10.1136/bmj.j573

50. Enders CK, Tofighi D. Centering predictor variables in cross-
sectional multilevel models: a new look at an old issue. Psy-
chol Methods. 2007;12:121-138.

51. Cohen J, Cohen P, Aiken LS, West SG. Applied Multiple
Regression/Correlation Analysis for the Behavioral Sciences. 3rd
ed. Lawrence Erlbaum Associates; 2003.

52. Dalal DK, Zickar MJ. Some common myths about centering
predictor variables in moderated multiple regression and poly-
nomial regression. Organ Res Methods. 2012;15(3):339-362.
doi:10.1177/1094428111430540

53. Fisher DJ, Copas AJ, Tierney JF, Parmar MKB. A critical
review of methods for the assessment of patient-level interac-
tions in individual participant data meta-analysis of random-
ized trials, and guidance for practitioners. J Clin Epidemiol.
2011;64(9):949-967. doi:10.1016/j.jclinepi.2010.11.016

54. Simmonds MC, Higgins JPT. Covariate heterogeneity in meta-
analysis: criteria for deciding between meta-regression and
individual patient data. Stat Med. 2007;26(15):2982-2999. doi:
10.1002/sim.2768

55. Gasparrini A, Armstrong B, Kenward MG. Multivariate meta-
analysis for non-linear and other multi-parameter associa-
tions. Stat Med. 2012;31(29):3821-3839. doi:10.1002/sim.5471

56. Stapleton LM. Incorporating sampling weights into single-
and multilevel analyses. In: Rutkowski L, von Davier M,
Rutkowski D, eds. Handbook of International Large-Scale
Assessment Background, Technical Issues, and Methods of Data
Analysis. CRC Press; 2014:363-388.

57. Snijders TAB, Bosker RJ. Multilevel Analysis: An Introduction
to Basic and Advanced Multilevel Modeling. 2nd ed. Sage;
2012.

58. Raudenbush SW, Bryk AS. Hierarchical Linear Models. 2nd
ed. Sage; 2002.

59. Tanner-Smith EE, Tipton E. Robust variance estimation with
dependent effect sizes: practical considerations including a
software tutorial in Stata and SPSS. Res Synth Methods. 2014;
5(1):13-30. doi:10.1002/jrsm.1091

60. Audigier V, White IR, Jolani S, et al. Multiple imputation for
multilevel data with continuous and binary variables. Stat Sci.
2018;33(2):160-183. doi:10.1214/18-STS646

61. OECD. PISA 2006. Technical Report. OECD; 2009.
62. Graham JW. Missing data analysis: making it work in the real

world. Annu Rev Psychol. 2009;60:549-576.
63. Peugh JL, Enders CK. Missing data in educational research: a

review of reporting practices and suggestions for improve-
ment. Rev Educ Res. 2004;74(4):525-556. doi:10.3102/
00346543074004525

64. Van Buuren S. Flexible Imputation of Missing Data. 2nd ed.
CRC Press; 2018 https://stefvanbuuren.name/fimd/

65. Skinner C, Wakefield J. Introduction to the design and analy-
sis of complex survey data. Stat Sci. 2017;32(2):165-175. doi:
10.1214/17-STS614

66. Organisation for Economic Co-operation and Development.
PISA Data Analysis Manual. SPSS. 2nd ed. OECD; 2009.

67. Rutkowski L, Gonzalez E, Joncas M, von Davier M. Interna-
tional large-scale assessment data: issues in secondary analy-
sis and reporting. Educ Res. 2010;39(2):142-151. doi:10.3102/
0013189X10363170

68. Stapleton LM. An assessment of practical solutions for struc-
tural equation modeling with complex sample data. Struct
Equ Model Multidiscip J. 2006;13(1):28-58. doi:10.1207/
s15328007sem1301_2

69. Brunner M, Keller U, Wenger M, Fischbach A, Lüdtke O.
Between-school variation in students' achievement, motiva-
tion, affect, and learning strategies: results from 81 countries
for planning group-randomized trials in education. J Res Educ
Eff. 2018;11(3):452-478. doi:10.1080/19345747.2017.1375584

70. Rust K, Rao J. Variance estimation for complex surveys using
replication techniques. Stat Methods Med Res. 1996;5(3):283-
310. doi:10.1177/096228029600500305

71. Rust K. Sampling, weighting, and variance estimation in
international large-scale assessments. In: Rutkowski L, von
Davier M, Rutkowski D, eds. Handbook of International
Large-Scale Assessment Background, Technical Issues, and
Methods of Data Analysis. CRC Press; 2014:117-153.

72. Borenstein M, Hedges LV. Effect sizes for meta-analysis. In:
Cooper HM, Hedges LV, Valentine JC, eds. Handbook of
Research Synthesis and Meta-Analysis. 3rd ed. Russell Sage
Foundation; 2019:207-243.

73. Pek J, Flora DB. Reporting effect sizes in original psychologi-
cal research: a discussion and tutorial. Psychol Methods. 2018;
23(2):208-225. doi:10.1037/met0000126

74. Cumming G, Calin-Jageman R. Introduction to the New Statis-
tics: Estimation, Open Science, and Beyond. Routledge; 2016.

75. Hill CJ, Bloom HS, Black AR, Lipsey MW. Empirical bench-
marks for interpreting effect sizes in research. Child Dev Per-
spect. 2008;2:172-177.

76. von Davier M, Sinharay S. Analytics in international large-
scale assessments: item response theory and population
models. In: Rutkowski L, von Davier M, Rutkowski D, eds.
Handbook of International Large-Scale Assessment Back-
ground, Technical Issues, and Methods of Data Analysis. CRC
Press; 2014:155-201.

77. Debray TPA, Snell KIE, Quartagno M, Jolani S, Moons KGM,
Riley RD. Dealing with missing data in an IPD meta-analysis.
In: Riley RD, Tierney JF, Stewart LA, eds. Individual Partici-
pant Data Meta-Analysis: A Handbook for Healthcare
Research. Wiley Series in Statistics in Practice. Wiley; 2021:
499-524.

78. Resche-Rigon M, White IR. Multiple imputation by chained
equations for systematically and sporadically missing multile-
vel data. Stat Methods Med Res. 2018;27(6):1634-1649. doi:10.
1177/0962280216666564

79. Lüdtke O, Robitzsch A, West SG. Regression models involving
nonlinear effects with missing data: a sequential modeling
approach using Bayesian estimation. Psychol Methods. 2020;
25(2):157-181. doi:10.1037/met0000233

80. Resche-Rigon M, White IR, Bartlett WJ, SAE P, Thompson SG.
Multiple imputation for handling systematically missing con-
founders in meta-analysis of individual participant data. Stat
Med. 2013;32(28):4890-4905. doi:10.1002/sim.5894

81. Jolani S, Debray TPA, Koffijberg H, Van Buuren S,
Moons KGM. Imputation of systematically missing predictors
in an individual participant data meta-analysis: a generalized
approach using MICE. Stat Med. 2015;34(11):1841-1863. doi:
10.1002/sim.6451

82. Kunkel D, Kaizar EE. A comparison of existing methods for
multiple imputation in individual participant data meta-anal-
ysis. Stat Med. 2017;36(22):3507-3532. doi:10.1002/sim.7388

BRUNNER ET AL. 29

info:doi/10.1136/bmj.j573
info:doi/10.1177/1094428111430540
info:doi/10.1016/j.jclinepi.2010.11.016
info:doi/10.1002/sim.2768
info:doi/10.1002/sim.5471
info:doi/10.1002/jrsm.1091
info:doi/10.1214/18-STS646
info:doi/10.3102/00346543074004525
info:doi/10.3102/00346543074004525
https://stefvanbuuren.name/fimd/
info:doi/10.1214/17-STS614
info:doi/10.3102/0013189X10363170
info:doi/10.3102/0013189X10363170
info:doi/10.1207/s15328007sem1301_2
info:doi/10.1207/s15328007sem1301_2
info:doi/10.1080/19345747.2017.1375584
info:doi/10.1177/096228029600500305
info:doi/10.1037/met0000126
info:doi/10.1177/0962280216666564
info:doi/10.1177/0962280216666564
info:doi/10.1037/met0000233
info:doi/10.1002/sim.5894
info:doi/10.1002/sim.6451
info:doi/10.1002/sim.7388


83. Enders CK, Du H, Keller BT. A model-based imputation pro-
cedure for multilevel regression models with random coeffi-
cients, interaction effects, and nonlinear terms. Psychol
Methods. 2020;25(1):88-112. doi:10.1037/met0000228

84. Sterne JAC, White IR, Carlin JB, et al. Multiple imputation
for missing data in epidemiological and clinical research:
potential and pitfalls. BMJ. 2009;338:b2393. doi:10.1136/bmj.
b2393

85. Carpenter JR, Kenward MG. Multiple Imputation and Its
Application. John Wiley & Sons, Ltd; 2013. doi:10.1002/
9781119942283

86. White IR, Royston P, Wood AM. Multiple imputation using
chained equations: issues and guidance for practice. Stat Med.
2011;30(4):377-399. doi:10.1002/sim.4067

87. Collins LM, Schafer JL, Kam CM. A comparison of inclusive
and restrictive strategies in modern missing data procedures.
Psychol Methods. 2001;6(4):330-351.

88. Burgess S, White IR, Resche-Rigon M, Wood AM. Combining
multiple imputation and meta-analysis with individual partic-
ipant data. Stat Med. 2013;32(26):4499-4514. doi:10.1002/sim.
5844

89. Rubin DB. Nested multiple imputation of NMES via partially
incompatible MCMC. Stat Neerlandica. 2003;57(1):3-18. doi:
10.1111/1467-9574.00217

90. Robitzsch A, Lüdtke O. Mdmb: Model Based Treatment of
Missing Data. R package version 1.5-8; 2021. https://cran.r-
project.org/web/packages/mdmb/index.html

91. Grund S, Lüdtke O, Robitzsch A. Multiple imputation of miss-
ing data in multilevel models with the R package mdmb: a
flexible sequential modeling approach. Behav Res Methods.
2021;53(6):2631-2649. doi:10.3758/s13428-020-01530-0

92. van Ginkel JR. Standardized regression coefficients and newly
proposed estimators for R2 in multiply imputed data. Psycho-
metrika. 2020;85(1):185-205. doi:10.1007/s11336-020-09696-4

93. West BT, Sakshaug JW, Aurelien GAS. Accounting for complex
sampling in survey estimation: a review of current software
tools. J Off Stat. 2018;34(3):721-752. doi:10.2478/jos-2018-0034

94. R Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing; 2021
https://www.R-project.org/

95. Hedges LV, Tipton E, Johnson MC. Robust variance estima-
tion in meta-regression with dependent effect size estimates.
Res Synth Methods. 2010;1(1):39-65. doi:10.1002/jrsm.5

96. Scammacca N, Roberts G, Stuebing KK. Meta-analysis with
complex research designs: dealing with dependence from
multiple measures and multiple group comparisons. Rev Educ
Res. 2014;84(3):328-364. doi:10.3102/0034654313500826

97. Cheung MWL. Meta-Analysis: A Structural Equation Modeling
Approach. Wiley; 2015.

98. Pustejovsky JE, Tipton E. Meta-analysis with robust variance
estimation: expanding the range of working models. Prev Sci
Off J Soc Prev Res. 2022;23(3):425-438. doi:10.1007/s11121-021-
01246-3

99. Bender R, Friede T, Koch A, et al. Methods for evidence syn-
thesis in the case of very few studies. Res Synth Methods. 2018;
9(3):382-392. doi:10.1002/jrsm.1297

100. IntHout J, Ioannidis JP, Borm GF. The Hartung-Knapp-Sidik-
Jonkman method for random effects meta-analysis is straight-
forward and considerably outperforms the standard
DerSimonian-Laird method. BMC Med Res Methodol. 2014;
14(1):25. doi:10.1186/1471-2288-14-25

101. Knapp G, Hartung J. Improved tests for a random effects
meta-regression with a single covariate. Stat Med. 2003;22(17):
2693-2710. doi:10.1002/sim.1482

102. Sidik K, Jonkman JN. On constructing confidence intervals for a
standardized mean difference in meta-analysis. Commun Stat -
Simul Comput. 2003;32(4):1191-1203. doi:10.1081/SAC-120023885

103. Hedges LV, Olkin I. Statistical Methods for Meta-Analysis.
Academic Press; 1985.

104. Tipton E. Small sample adjustments for robust variance esti-
mation with meta-regression. Psychol Methods. 2015;20(3):
375-393. doi:10.1037/met0000011

105. Veroniki AA, Jackson D, Viechtbauer W, et al. Methods to
estimate the between-study variance and its uncertainty in
meta-analysis. Res Synth Methods. 2016;7(1):55-79. doi:10.
1002/jrsm.1164

106. Viechtbauer W. Conducting meta-analyses in R with the
metafor package. J Stat Softw. 2010;36(3). doi:10.18637/jss.
v036.i03

107. Borenstein M, Higgins JPT, Hedges LV, Rothstein HR. Basics
of meta-analysis: I2 is not an absolute measure of heterogene-
ity. Res Synth Methods. 2017;8(1):5-18. doi:10.1002/jrsm.1230

108. Higgins JPT, Thomas J, Chandler J, et al., eds. Cochrane
Handbook for Systematic Reviews of Interventions. Cochrane;
2021 www.training.cochrane.org/handbook

109. Polanin JR, Hennessy EA, Tanner-Smith EE. A review of
meta-analysis packages in R. J Educ Behav Stat. 2017;42(2):
206-242. doi:10.3102/1076998616674315

110. Pustejovsky JE. ClubSandwich: Cluster-robust (sandwich) vari-
ance estimators with small-sample corrections. R package version
0.5.3. 2021. https://CRAN.R-project.org/package=clubSandwich

111. Hyde JS. The gender similarity hypothesis. Am Psychol. 2005;
60:581-592.

112. OECD. Literacy Skills for the World of Tomorrow: Further
Results from PISA 2000. OECD; 2003.

113. Wang S, Jiao H, Young MJ, Brooks T, Olson J. Comparabil-
ity of computer-based and paper-and-pencil testing in K–12
reading assessments: a meta-analysis of testing mode
effects. Educ Psychol Meas. 2008;68(1):5-24. doi:10.1177/
0013164407305592

114. Tipton E, Pustejovsky JE, Ahmadi H. Current practices in
meta-regression in psychology, education, and medicine. Res
Synth Methods. 2019;10(2):180-194. doi:10.1002/jrsm.1339

115. Belsley DA, Kuh E, Welsch RE. Regression Diagnostics: Identi-
fying Influential Data and Sources of Collinearity. John Wiley &
Sons, Inc; 1980. doi:10.1002/0471725153

116. Viechtbauer W, Cheung MWL. Outlier and influence diagnos-
tics for meta-analysis. Res Synth Methods. 2010;1(2):112-125.
doi:10.1002/jrsm.11

117. Glass GV. Meta-analysis at middle age: a personal history. Res
Synth Methods. 2015;6(3):221-231. doi:10.1002/jrsm.1133

118. Pellegrino JW, Baxter GP, Glaser R. Addressing the “two disci-
plines” problem: linking theories of cognition and learning
with assessment and instructional practice. Rev Res Educ.
1999;24:307-354.

119. Slagt M, Dubas JS, Dekovi�c M, van Aken MAG. Differences in
sensitivity to parenting depending on child temperament: a
meta-analysis. Psychol Bull. 2016;142(10):1068-1110. doi:10.
1037/bul0000061

120. Oberski D. lavaan.survey: an R package for complex survey
analysis of structural equation models. J Stat Softw. 2014;
57(1):1-27. doi:10.18637/jss.v057.i01

30 BRUNNER ET AL.

info:doi/10.1037/met0000228
info:doi/10.1136/bmj.b2393
info:doi/10.1136/bmj.b2393
info:doi/10.1002/9781119942283
info:doi/10.1002/9781119942283
info:doi/10.1002/sim.4067
info:doi/10.1002/sim.5844
info:doi/10.1002/sim.5844
info:doi/10.1111/1467-9574.00217
https://cran.r-project.org/web/packages/mdmb/index.html
https://cran.r-project.org/web/packages/mdmb/index.html
info:doi/10.3758/s13428-020-01530-0
info:doi/10.1007/s11336-020-09696-4
info:doi/10.2478/jos-2018-0034
https://www.r-project.org/
info:doi/10.1002/jrsm.5
info:doi/10.3102/0034654313500826
info:doi/10.1007/s11121-021-01246-3
info:doi/10.1007/s11121-021-01246-3
info:doi/10.1002/jrsm.1297
info:doi/10.1186/1471-2288-14-25
info:doi/10.1002/sim.1482
info:doi/10.1081/SAC-120023885
info:doi/10.1037/met0000011
info:doi/10.1002/jrsm.1164
info:doi/10.1002/jrsm.1164
info:doi/10.18637/jss.v036.i03
info:doi/10.18637/jss.v036.i03
info:doi/10.1002/jrsm.1230
http://www.training.cochrane.org/handbook
info:doi/10.3102/1076998616674315
https://CRAN.R-project.org/package=clubSandwich
info:doi/10.1177/0013164407305592
info:doi/10.1177/0013164407305592
info:doi/10.1002/jrsm.1339
info:doi/10.1002/0471725153
info:doi/10.1002/jrsm.11
info:doi/10.1002/jrsm.1133
info:doi/10.1037/bul0000061
info:doi/10.1037/bul0000061
info:doi/10.18637/jss.v057.i01


121. Singer JD, Braun HI. Testing international education assess-
ments. Science. 2018;360(6384):38-40. doi:10.1126/science.
aar4952

122. Pigott TD, Williams R, Polanin J. Combining individual par-
ticipant and aggregated data in a meta-analysis with correla-
tional studies. Res Synth Methods. 2012;3(4):257-268. doi:10.
1002/jrsm.1051

123. Johnson BT. Toward a more transparent, rigorous, and gener-
ative psychology. Psychol Bull. 2021;147(1):1-15. doi:10.1037/
bul0000317

124. Neimann Rasmussen L, Montgomery P. The prevalence of
and factors associated with inclusion of non-English language
studies in Campbell systematic reviews: a survey and meta-
epidemiological study. Syst Rev. 2018;7(1):129. doi:10.1186/
s13643-018-0786-6

125. Giustini D. Retrieving grey literature, information, and data
in the digital age. In: Cooper HM, Hedges LV, Valentine JC,
eds. Handbook of Research Synthesis and Meta-Analysis. 3rd
ed. Russell Sage Foundation; 2019:101-126.

126. Barroso C, Ganley CM, McGraw AL, Geer EA, Hart SA,
Daucourt MC. A meta-analysis of the relation between math
anxiety and math achievement. Psychol Bull. 2021;147(2):134-
168. doi:10.1037/bul0000307

127. Stewart LA, Riley RD, Tierney JF. Planning and initiating an
IPD meta-analysis project. In: Riley RD, Tierney JF,
Stewart LA, eds. Individual Participant Data Meta-Analysis: A
Handbook for Healthcare Research. Wiley Series in Statistics in
Practice. Wiley; 2021:21-43.

128. Ensor J, Burke DL, Snell KIE, Hemming K, Riley RD. Simula-
tion-based power calculations for planning a two-stage indi-
vidual participant data meta-analysis. BMC Med Res Methodol.
2018;18(1):41. doi:10.1186/s12874-018-0492-z

129. Ahmed I, Sutton AJ, Riley RD. Assessment of publication
bias, selection bias, and unavailable data in meta-analyses
using individual participant data: a database survey. BMJ.
2012;344:d7762. doi:10.1136/bmj.d7762

130. Stewart LA, Clarke M, Rovers M, et al. Preferred reporting
items for a systematic review and meta-analysis of individual
participant data: the PRISMA-IPD statement. Jama. 2015;
313(16):1657-1665. doi:10.1001/jama.2015.3656

SUPPORTING INFORMATION
Additional supporting information can be found online
in the Supporting Information section at the end of this
article.

How to cite this article: Brunner M, Keller L,
Stallasch SE, et al. Meta-analyzing individual
participant data from studies with complex survey
designs: A tutorial on using the two-stage approach
for data from educational large-scale assessments.
Res Syn Meth. 2022;1‐31. doi:10.1002/jrsm.1584

BRUNNER ET AL. 31

info:doi/10.1126/science.aar4952
info:doi/10.1126/science.aar4952
info:doi/10.1002/jrsm.1051
info:doi/10.1002/jrsm.1051
info:doi/10.1037/bul0000317
info:doi/10.1037/bul0000317
info:doi/10.1186/s13643-018-0786-6
info:doi/10.1186/s13643-018-0786-6
info:doi/10.1037/bul0000307
info:doi/10.1186/s12874-018-0492-z
info:doi/10.1136/bmj.d7762
info:doi/10.1001/jama.2015.3656
info:doi/10.1002/jrsm.1584

	Meta-analyzing individual participant data from studies with complex survey designs: A tutorial on using the two-stage appr...
	1  INTRODUCTION
	2  ADVANTAGES OF COMBINING META-ANALYTIC TECHNIQUES AND IPD FROM ELSAS
	2.1  Advantages of IPD from ELSAs
	2.2  Advantages of IPD meta-analyses of ELSAs

	3  THE PRESENT TUTORIAL
	4  IPD META-ANALYSES OF ELSAS: GENERAL CHARACTERISTICS
	4.1  IPD meta-analyses of ELSAs and systematic reviews
	4.2  One-stage and two-stage approaches to IPD meta-analyses of ELSAs
	4.3  Explaining heterogeneity in effect sizes in IPD meta-analyses of ELSAs
	4.3.1  Heterogeneity in effect sizes at multiple levels
	4.3.2  Ecological fallacies
	4.3.3  Some guidance for examining the heterogeneity of effect sizes at various levels

	4.4  Missing data in ELSAs
	4.4.1  Sporadically and systematically missing data
	4.4.2  Missingness mechanisms


	5  INTRODUCING THE TWO-STAGE APPROACH TO IPD META-ANALYSIS TAILORED TO ELSAS
	5.1  Stage 1: Effect size estimation for IPD from ELSAs
	5.1.1  Stratified multistage random sampling and (final) sample weights
	Stratified multistage random sampling
	Stratified multistage random sampling as applied in PISA
	(Final) sample weights

	5.1.2  Clustered data and the estimation of sampling variances
	Clustered data
	Estimation of sampling variance

	5.1.3  Estimating effect sizes
	Unstandardized and standardized effect sizes
	Linear regression models to estimate standardized effect sizes

	5.1.4  Missing data in ELSAs
	Plausible values
	The substantive-model-compatible sequential modeling approach
	Applying PVs, multiple imputations, and nested multiple imputations to estimate effect sizes and their sampling variances

	5.1.5  Empirical examples: Estimation of effect sizes and their sampling variances
	Research questions
	Samples and measures
	Handling missing values
	Model sets to estimate effect sizes and their sampling variances
	Software


	5.2  Stage 2: Integrating effect sizes and analyzing their heterogeneity with meta-analytic models
	5.2.1  Choosing a meta-analytic model
	Inference populations in the fixed-effect model and random-effects model
	Dependencies among observed effect sizes and their distributional form

	5.2.2  Three-level random-effects model
	Model specification
	Evaluation of the heterogeneity of effect sizes

	5.2.3  Applications of the three-level random-effects model
	Meta-analyzing gender differences in reading achievement
	Meta-analyzing the relationship between reading achievement and students' SES
	Meta-analyzing the interaction between gender differences and students' SES

	5.2.4  Meta-regression
	Expanding the three-level random-effects model into a meta-regression model
	Potential issues in meta-regression analyses and suggested solutions



	6  GENERAL DISCUSSION
	6.1  Research opportunities with IPD meta-analyses of ELSAs
	6.2  Where to look for further methodological guidance
	6.3  Conclusion

	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENT
	CONFLICTS OF INTEREST
	DATA AVAILABILITY STATEMENT

	Endnotes
	REFERENCES


