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The interpretation of cross-effects from vector autoregressive models to infer structure and
causality amongst constructs is widespread and sometimes problematic. I first explain how hy-
pothesis testing and regularization are invalidated when processes that are thought to fluctuate
continuously in time are, as is typically done, modeled as changing only in discrete steps. I then
describe an alternative interpretation of cross-effect parameters that incorporates correlated
random changes for a potentially more realistic view of how process are temporally coupled.
Using an example based on wellbeing data, I demonstrate how some classical concerns such
as sign flipping and counter intuitive effect directions can disappear when using this combined
deterministic / stochastic interpretation. Models that treat processes as continuously interacting
offer both a resolution to the hypothesis testing problem, and the possibility of the combined
stochastic / deterministic interpretation.
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Predicting the future based on a set of past observations
is, in at least some sense, a straightforward problem. We
can of course be wrong to varying degrees, but the basic
tools of statistics and computation have evolved to the point
where basic recipes for the use of past data to predict fu-
ture data can often give quite reasonable results. In contrast,
predicting how the future will be different if we intervene in
a specific way, based on the same set of past observations,
is, in most cases, far more difficult. Therein lies both the
promise and the pain of much of statistical modeling. Dis-
cussing mere correlation is easy, causal interpretation under
the assumption of having fit the ’true’ model is easy, but
unfortunately most science resides somewhere in the grey
zone where causality is of interest and models plus data are
only approximations of a more complex reality. In classical
experimental settings such as a randomized controlled trial,
the statistical model can sometimes be quite simple, and the
causal interpretation seemingly quite clear – the prime infer-
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ential difficulty in such cases is usually mapping understand-
ing of one or more very specific, controlled contexts, to the
broader and messier reality we’re usually interested in. The
use of observational data approaches typically aims to reduce
some of these generalization issues (i.e. data better reflects
the circumstances of interest), but from this arises what can
be thought of as an inverse generalization issue – that of go-
ing from ’what is likely to happen to y when x changes for
any reason’ to ’what is likely to happen to y if x is manipu-
lated’.

Cross-lagged effects in longitudinal models have for long
offered a tantalizing vision of causal inference in observa-
tional data, but their interpretation has for just as long been
problematic and controversial, as interpretations often go
far beyond what can reasonably be said given the data. In
this paper I discuss two important issues when interpret-
ing cross-lagged coefficients. I first discuss a very common
form of model misinterpretation, wherein researchers assume
that a model structure involving discrete jumps between time
points (e.g. typical structural equation or vector autoregres-
sive models) can be used for sensible inference about pro-
cesses that do not exhibit such a discrete jump structure.
Although not a problem in every situation, in moderate to
high dimensional scenarios inferences become invalid, and
this does not appear to be well understood in the field. This
misspecification is in a sense a ‘simple’ problem, in that al-
though it may involve some mathematical complexity, the so-
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lution is known and approaches to remedy the issue are clear.
The far trickier problem is what we can understand from esti-
mated parameters when we drop the usually massively incor-
rect assumption that the specified model structure accurately
reflects reality. To this end, I offer no panacea, but a novel ap-
proach to visualizing and thinking about cross-lagged effects
that considers both deterministic and stochastic temporal ef-
fects in a combined manner, rather than only the determin-
istic parameters (e.g. cross regressions) alone as is typically
done. With an empirical example using long-term data on
satisfaction, I demonstrate how some confusions and overly
strong claims can disappear when considered from this alter-
native view.

Cross-lagged models

Most models that address coupled processes over time,
such as vector autoregressive, cross-lagged panel, and mul-
tivariate change-score models, contain, or can be re-written
to contain, (e.g. Voelkle & Oud, 2015) equation components
for modeling the processes that look something like this:

yu = Ayu−1 + b +Gzu z ∼ N(0, 1) (1)

Where y is a d length vector of process values (possibly
but not necessarily data), u is an index of measurement oc-
casion, A is a matrix of temporal regression coefficients, b is
an intercept, and G is the effect matrix of the d length sys-
tem noise vector z, where z contains independent and iden-
tically distributed deviations with zero mean. Many exten-
sions and variations are in use, non-linear forms may be writ-
ten more generically as functions, but the issues discussed
herein, while broadly applicable, are simplest to understand
using the basic form shown. For a recent overview contrast-
ing different approaches to cross-lagged models and soft-
ware, see Ruissen et al. (2021).

Part 1 - Misspecified Temporal Structure

Hypothesis testing and structure discovery via regulariza-
tion are both regularly misunderstood and misapplied in the
context of cross-lagged panel models, dual change scores,
vector auto-regressive models, and similar approaches that
implicitly assume processes evolve in discrete jumps in time,
when in reality researchers tend to think of the underly-
ing processes as continually in flux. While the need for
continuous-time systems for inference with stochastic pro-
cesses has already been discussed somewhat, (see for exam-
ple Aalen, 1987; Aalen et al., 2016; Deboeck & Preacher,
2016; Kuiper & Ryan, 2018; Ryan & Hamaker, 2021),
discrete-time cross-regressive models are still the dominant
paradigm for inference in such settings. To explicitly high-
light the problem, in this section I provide some simple ex-
amples, in the domains of hypothesis testing, and structural
discovery via regularization. The take home message will

be that even in relatively sparse causal systems, the temporal
regression matrix between observations at different times is
very likely to be dense, or at least less sparse – though in
some cases can also show similar sparsity to the causal sys-
tem but in different locations. The fundamental problem is
that this discrepancy correspondingly invalidates attempts to
infer structure or causation via the specification of, or regu-
larization to, zeroes in the matrix of dynamic regression co-
efficients. This issue arises due to a difference in how the
systems are typically expected to behave, which is continu-
ously (or very frequently) interacting, and how they are mod-
eled, which is interacting only when measured. This discrep-
ancy can be resolved by directly estimating a continuous-
time temporal effects matrix, and specifying or regulariz-
ing this to zero – the corresponding discrete-time regression
weights and covariances can then be computed based on the
continuous time temporal effects, or ‘drift’, matrix, and the
time interval between observations. Important to note, is that
this all applies whether or not time intervals vary between
observations or subjects.

When a cross-lagged model is used to represent a hypoth-
esis where it is believed that a) the processes actually evolve
in discrete jumps, and b) the measurement occasions u ac-
tually capture each and every one of these discrete jumps,
then there is no problem. To consider such a system, we
could imagine 3 people exchanging information by post, and
the post is delivered daily. Person x writes to person y, and
person y in turn passes this information on to person z. If
we know that person x has received new information, we can
expect y to become aware of this the following day, while it
will take an additional day before z knows it. In this case, we
can precisely represent the causal pathways using a temporal
regression matrix (or path diagram) that represents change
over a time interval of one day or one postal delivery, as per
Figure 1. y is entirely dependent on x for information, and z
is dependent on y.

x y z
x 1 0 0

y 1 0 0
z 0 1 0

Using such a representation, our model will perform opti-
mally in terms of prediction, where we can use some knowl-
edge of what information each individual has on a particular
day to predict future days. Furthermore, we can also use
the structure to understand what will happen if the structure
changes – if for instance the link between y and z is removed,
we know that z will not receive any information from x.

What happens to our representation if we instead shift to
an observation time interval of two days or two deliveries
though? As soon as we deviate from the ’true’ time step over
which information flow occurs, our representation no longer
matches the data generating process, or causality, inherent to
the system. For an interval of two days, the temporal regres-
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Figure 1

Representation of daily packets of information flow between
persons x, y, and z, across 3 days.

sion matrix would look as follows, and the path diagram as
per Figure 2. When the new time interval is simply an integer
τmultiple of the original, the new temporal regression matrix
can be obtained by matrix multiplying the original matrix by
itself τ − 1 times.

x y z
x 1 0 0

y 1 0 0
z 1 0 0

Figure 2

Representation of packets of information flow between per-
sons x, y, and z, across 6 days, when the time interval is two
days.

In this case, we have accurately represented how informa-
tion flows through the system at time intervals of two days, in
that once a change in x occurs, 2 days later we see changes in
both y and z. So, we can still use the representation to make
accurate predictions on a 2 day interval. However, we clearly
have not represented the actual causality in the system! One
might be tempted to infer from this representation that person
y is simply unnecessary for information flow between x and
z, but in fact person y is required.

This discrepancy between the generating model, and in-
formation flow given an arbitrary unit of time, captures a

problem inherent to many longitudinal modeling endeavors.
Such a discrepancy is precisely why discrete-time cross re-
gression parameters cannot be used as the basis of hypothe-
sis tests regarding causality, or as indicators of some gener-
ative structure when achieved via regularization. The causal
conclusions that result are not valid, even when the true
model is some form of vector autoregression and plenty of
data is available – unless every possible occasion of change
(whether observed or not) is included in the model.

As we can see from the example, problems related to hy-
pothesis tests and structure determination with discrete time
models occur even when the true data generating function
is a discrete time function, whenever more than one step of
change has occurred between observations. Given that most
psychological processes tend to be thought of as continu-
ously existing and interacting with each other, rather than
interacting only when we decide to measure them, this poses
something of a problem, as regular longitudinal structural
equation modeling and network modeling approaches can’t
represent the data generating processes that researchers typ-
ically hypothesize. While this is not inherently problematic
when models are used only for predictive purposes – in the
postal example, we could still make accurate two-day for-
ward predictions using the two day temporal regressions –
it is a problem whenever the underlying causality (or ’struc-
ture’) is of interest.

Continuous Time

Instead of modeling processes as a sequence of discrete
jumps, differential equations – the mathematics of continu-
ously changing processes – have been available and widely
used in the sciences for hundreds of years. While the fields of
psychology have recently been showing more awareness of
differential equation approaches, the full ramifications with
respect to understanding and testing causal structure still ap-
pear little understood. While some of the mathematical com-
putations required for software to solve the equations and
fit continuous time models can look cruel and unusual, an
intuitive understanding can be gained quite easily, and this
often resolves a range of time-related confusions that can
also occur with more familiar regression oriented approaches
(Voelkle et al., 2019, For more on such confusions, see).

In discrete-time systems, the matrix of temporal effects
represents regression strengths between two points in time,
as in the day or two day examples discussed in the earlier
letter writing example. Continuous-time approaches can be
intuitively thought of in much the same way, but simply com-
pressing the time interval to a ‘very small’ value. This allows
for usage of a conceptually similar temporal effects matrix,
the only difference being that the matrix represents the in-
fluence of the current state of the system on the change in
the system – which is actually analogous to the approach
used in change-score structural equation models, where an
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autoregression of 1.00 is always applied in addition to any
estimated self and cross feedback parameters. A continuous-
time form of the vector autoregression discussed is:

dy(t) = (Ay(t) + b)dt +GdW(t) (2)

This looks similar to the discrete-time form, but instead of
telling us the new value of y given one step forward in time,
it tells us how y is changing at the moment. Some mathe-
matical complications due to the nature of stochastic differ-
ential equations are present: the dt on the right hand side,
which can simply be thought of as a very small step in time,
and the dW(t), which represents white noise in continuous
time. To compute y at some time point given an earlier value,
one needs to solve the system. This is numerically involving
and described in detail in Voelkle et al. (2012), however sim-
ple approximations using linear extrapolation can be done by
hand, and are quite helpful – both for numerical simulation
and to follow the basic logic.

yu = yu−1 + ∆t(Ayu−1 + b) +Gzu z ∼ N(0,∆t)) (3)

Essentially then, one computes the deterministic rate of
change using A and b and the earlier value of y, then multi-
plies this by the length of time step ∆t desired. The variance
of the white noise element z is then also ∆t, resulting in a sys-
tem noise (co)variance of GG⊤∆t. Shorter steps are (up to a
point) more accurate, but require more computations. Many
refinements are possible – this simply represents the basic
idea, which is called the Euler-Maruyama method in the con-
text of stochastic differential equations. The linear system
shown also allows an ‘exact’ (close, anyway) one-step so-
lution. While this is described in more detail elsewhere (e.g.
Driver & Voelkle, 2018a, contains the equations and code for
plotting), the basic component involves the matrix exponen-
tial, with temporal regression coefficients for particular time
intervals given by eA∆t.

As shown earlier, when using a discrete-time specification
to model a system that is assumed to be continuously inter-
acting, zeroes in the matrices do not imply zero causal effect.
We can understand this by computing the implied discrete-
time coefficients of a continuously interacting system, using
eA∆t. To illustrate this we can consider a similar system to the
postal example, with A affecting y which in turn affects z, but
where interactions occur continuously. The continuous-time
temporal matrix is:

x y z
x −1 0 0

y 1 −1 0
z 0 1 −1

The negative coefficients on the diagonal tell us that in-
creases in any of the variables exert a downwards pressure

on that same variable in the future, while the positive cross-
effects show where change in one variable (determined by the
column) leads to positive change in another (determined by
the row). Figure 3 illustrates the flow of influence through
the system, given some change in variable x. Such a plot
is interpretable both as an impulse response function (given
an impulse of magnitude 1.00), and as the implied discrete-
time coefficients. The value of x at time zero (i.e. when the
change in x occurs) becomes less predictive of later values
of x, so the coefficient reduces. Initially, the time zero value
of x is not predictive of either y or z, but as time goes by the
change in x exerts influence on y, and then via y on z, so the
regression coefficients rise. At some point, once the initial
change in x has worn off to a sufficient degree, the coeffi-
cient for y reaches a peak and starts to reduce, and similarly
for z. Important to note is that any such peaks do not repre-
sent a period of ‘peak effect’ or the like – the cross-effect is
constant over time, it is simply that the accumulation of any
effect becomes most obvious somewhere between the time of
the initial change, and the time when the initial change has
mostly dissipated.
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Figure 3

Temporal regression coefficients between x at an earlier point
in time and x, y, z. Note that the coefficient between x and z
is never zero, even though there is no causal effect. A time
interval of 1 unit is marked – the same temporal matrix struc-
ture in a discrete-time approach would still show 0.00 for the
influence on z at this point.

So, the zeroes in a discrete-time matrix set the coefficients
at some particular point in time to zero, but this does not
readily map to causality in a continuously interacting sys-
tem. In contrast, modeling the continuous-time system di-
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rectly allows one to turn off certain causal paths of the tem-
poral effects A or system noise effects G. This point is easy
to miss because there are substantial equivalences between
discrete and continuous time models when temporal effects
are freely estimated, in that with free parameters, equivalent
predictions are (in many cases) arrived at. The distinction
comes about when restrictions are imposed on the system –
zeroes in discrete-time temporal effects do not necessarily
translate to zeroes in discrete-time effects given a different
sampling rate, or zeroes in continuous-time temporal effects.

For a tangible way to think about the problem, consider a
system of motivation to exercise (x), daily exercise levels (y),
and fitness (z). A not unreasonable causal hypothesis would
look like the structure of Figure 1, where motivation leads to
exercise which leads to fitness, or x -> y -> z. Consider then
a yearly panel study and a typical discrete-time modeling ap-
proach. Naively mapping the underlying causal structure we
believe in to the yearly temporal coefficients results in the
situation that changes in motivation to exercise take a year
to result in changes in exercise, and a further year for this
to affect fitness. While Figure 3 is no doubt still inaccurate
(because humans are highly complex and it is a made up ex-
ample using a linear system), it gets much closer to what we
would expect – an initial increase in motivation (x, black)
starts to increase daily exercise levels (y, red), which in turn
start to increase fitness levels (z, green).

To highlight the scope of potentially invalid inferences
in these directions, I simulated continuously interacting sys-
tems with a range of dimensions and levels of sparsity, ob-
served at time intervals of 1.00. Self-feedback effects (i.e.
the diagonals) were fixed to -1, with cross effects randomly
set to either 0.5, 0, or -0.5. The correct discrete-time tem-
poral regression matrices were computed for each of these,
and then they were checked for inferential consistency. Per-
fect consistency is found when the pattern of zeroes in the
discrete-time matrix exactly matches the pattern of the gener-
ative system. To reflect the fact that values near zero are often
assumed to be, or regularized to, zero, an arbitrary threshold
of 0.05 was used – discrete-time coefficients between -0.05
and 0.05 were assumed zero. All choices in this simulation
are necessarily somewhat arbitrary, but the point is found in
the general patterns, not the absolute values. The code pro-
vided in supplementary material allows for easy changes to
these decisions if desired. The top plot of Figure 4 shows
the proportion of correctly inferred zeroes (i.e. the correct
absence of a causal path) using discrete-time matrices. The
lower plot shows the proportion of incorrectly inferred ze-
roes (i.e. the incorrect presence of a causal path). We see
that for three dimensional systems, inferring from freely es-
timated discrete-time matrices about zeroes in continuously
interacting systems appears viable, since the proportion of
incorrectly inferred zeroes was 0.00. Inferring the presence
of a non-zero path is however, still problematic. Kuiper and

Ryan (2018) address some aspects of this in more detail. As
system dimensions increase, the proportion of zeroes in the
discrete-time matrices is too low, except for systems with ei-
ther mostly zeroes, or no zeroes. This means that when using
discrete-time models a) more parameters are necessary to es-
timate the same causal system, and b) cross-effect parameters
may be needed between variables that have no direct causal
path in the generating system. Also as dimensions increase,
the proportion of incorrectly inferred zeroes increases, with
higher proportions in dense, highly connected systems.
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Figure 4

Simulation results, showing how the use of discrete-time
models for continuously interacting systems results in invalid
conclusions, across different dimensions and sparsity. On
top, the expected proportion of correct zeroes in the discrete-
time matrix is shown by the thin dotted line. On bottom,
the proportion of incorrect zeroes in the discrete-time matrix
should always be zero, yet this only holds when dimensions
are three or less.

A variety of software is available for modeling
continuous-time systems with stochastic elements, as de-
scribed here. The R software packages ctsem (Driver et al.,
2017) and dynr (Ou et al., 2019) are targeted more at social
science fields.

Regularization

Having highlighted the problems of relying on discrete-
time matrices as a basis for inference when systems evolve
continuously (or faster than measured), it is hopefully clear
that for confirmatory modeling and hypothesis testing, one
needs instead to parameterize the continuous-time temporal
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effects matrix. From that point, regular tools of hypothe-
sis testing and model comparison can be used as normal.
Moving away from confirmatory modeling however, it has
become popular within some fields to use regularization to
zero (e.g. using the lasso of Tibshirani, 1996) as the basis for
inferring causal structure of a system. While such a task is,
I believe, difficult and fraught with problems in the psycho-
logical domain, it is not necessarily more troublesome than
confirmatory modeling, and in both cases we should use the
most appropriate tools available.

For the case where structural discovery via regularization
is to be attempted, just as with hypothesis testing it is likely
that the continuous-time temporal effects are more represen-
tative of typical hypothesis and beliefs about psychological
systems. The ctsem software (Driver et al., 2017; Driver &
Voelkle, 2017) offers the ability to specify Bayesian priors on
the system parameters, which, when estimated using the de-
fault optimization approach, can also be interpreted as a form
of penalized likelihood. The default prior (when enabled) is
however a Gaussian distribution, which can be interpreted as
L2, or ridge, regression. L2 penalization does not lead to
sparse matrices, because coefficients will not, in general, be
pushed all the way to zero. A simple fix for this is to replace
the Gaussian prior with a Laplace distribution (interpretable
as L1 or lasso regression), ensuring that small coefficients
will be pushed to zero.

A comparison between L2 and L1 penalization ap-
proaches, applied to a simulated 4 dimensional system with a
mixture of true parameter values, is shown in Figures 5 and 6,
while code for the simulation and plots is in the supplemen-
tary material. The system has 4 interacting processes that
change continuously, with deterministic effects from the sys-
tem processes and random effects from uncorrelated noise.
The system is stationary and observed without error at inter-
vals of 1 time unit. The plots show how the estimated tem-
poral coefficients and log likelihoods of the system changes
as the penalty changes. From the continuous-time model,
both the continuous-time and implied discrete-time (Contin-
uousDiscrete) coefficients are shown, and coefficients from
a comparable (i.e. first order) discrete time model are also
included for comparison. Note that because the scale of
the discrete and continuous coefficients are not necessarily
the same, the ideal penalty for out of sample prediction will
also not be the same, although the general shape should be
– notwithstanding cases of misspecification, such as ignored
measurement error.

From Figure 5, we see the expected regularization to zero
of some continuous and discrete coefficients before others,
when using an L1 penalty approach. When using the L2 ap-
proach all coefficients converge at the same point, as the prior
scale (inverse of penalty) approaches zero, which is also ex-
pected. The main point to notice is that while the discrete-
time coefficients implied by the continuous-time model are
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Figure 5

Estimated temporal effect coefficients in a 4 dimensional sys-
tem, using both L1 (lasso / Laplace prior) and L2 (ridge
/ Gaussian prior) penalization with different prior scales.
Continuous and discrete time models were estimated, and
the discrete time coefficients implied by the continuous time
model are also shown.

similar to the discrete-time parameters, they are not the same,
and do not necessarily drop to zero when the corresponding
continuous parameter does.

Non-directed relations

Throughout the paper so far I have focused on directed re-
lationships. In many circumstances researchers may instead
be interested in covariance and correlation parameters, and
the same general pattern of results already described holds.
That is, zeroes in a discrete-time system noise covariance
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Estimated log likelihoods (in sample as well as out of sample)
in the same 4 dimensional system as Figure 5, using both L1
(lasso / Laplace prior) and L2 (ridge / Gaussian prior) pe-
nalization with different prior scales. Both continuous and
discrete time models were estimated.

matrix can only be interpreted as zeroes in an underlying
generative structure of interest, when the real system evolves
at (or slower than), the rate at which it has been modeled –
which typically corresponds to the frequency of observation.

Part 2 – Interpreting temporal coefficients

Of course, a simple linear model will generally be a vast
simplification, whether or not one treats time continuously,
or assumes that changes happen in sudden packets. This
likely means that any strong claims to causal inference based
on the consideration of cross-effect parameters are invalid or
at least over-confident, as they are based on the fiction that
the true model has been fit. If we take seriously the view that
our models are always simplifications however, additional in-
sight into the system dynamics may be gained by considering
how the stochastic portion of the model combines with the
deterministic portion, and may lend at least some additional
insight into questions of causality and temporal precedence.
The influence of this stochastic portion is represented by the
G in the system (latent process) equation, and is, importantly,
not synonymous with ‘the residual’, as there may be a mea-
surement layer between the latent process and observations.
The stochastic elements should instead be understood as the
genuine change in the process that could not be accounted for
by the deterministic model elements. Both discrete (Eq. (4))

and continuous (Eq. )(5)) time forms of the system equation
are repeated here for convenience:

yu = Ayu−1 + b +Gzu z ∼ N(0, 1) (4)

dy(t) = (Ay(t) + b)dt +GdW(t) (5)

Typically, when researchers attempt to understand system
dynamics by means of cross-effect parameters, the stochastic
portion of the system process is either completely ignored,
or considered as a separate entity. When, as in a typical sim-
ulation study, the true model is used to fit some data, this
is at least partially justifiable as the parameters can be inter-
preted relatively independently. In such a case, the determin-
istic, cross-effect parameters define how the components of
the system influence each other, and the stochastic elements
defines how the system components tend to be affected by
external, unknown sources. In this convenient but very fic-
tional simulation-land, we can do thought experiments such
as ‘What happens to the system if we change one component
independently of the others?’ and obtain the answers very
easily, as they are determined by the model design. Such
‘answers’ can, for example, take the shape of plots like that
of Figure 3, which shows how three elements of the system
respond to an upwards shock to one element – in simulated
data we can be certain that this deterministic response does
not vary under different types of shock. Here, shock should
be understood as a sudden impulse at a single moment, oc-
curring at time zero in the plots.

To the extent that we believe a model fit to real-world
data represents the true data generating process, we can of
course obtain answers to such thought experiments in just
the same way. However, consider a construct like ‘depres-
sion’, and suppose we measure it every day for one subject.
Once we have some data, we can fit a basic autoregressive
style model, and obtain parameters telling us approximately
how we can expect the system to behave from day to day.
Our temporal coefficient and system noise variance could be
perfectly precise (imagining infinite data), but they will only
ever represent some kind of average conditional on the var-
ious external shocks the subject underwent. We don’t have
any specific info on the external shocks the subject under-
went – these could be for instance a bad day at work, an
illness, or the loss of a loved one – so the best we can do
is characterize them via some distribution, but it’s important
to remember that underlying the distribution is some set of
potentially quite different events with different time courses
(see Driver & Voelkle, 2018b, for approaches to explicitly
incorporate known events with differing time courses). If we
also measure a second, related process, such as ‘anxiety’, we
will no doubt find some unique changes, but we are likely to
find the disturbance patterns of the two processes have some
similarity, i.e., the system noise is correlated. Where does
such similarity arise from? Some of the events that change
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depression may also tend to change anxiety, some of the
events that change depression may tend to happen at the same
time as events that cause anxiety, or both. Now, imagine that
the events which trigger both anxiety and depression tend to
have shorter term effects than the ‘average’ depression trig-
gering event, or in other words, the depression component of
the system returns to baseline faster after such a disturbance.
This will likely show up in our regular VAR type model as
a negative cross-effect of anxiety on depression, but is most
definitely not because inducing anxiety reduces depression!

While such logic may be unusual thinking, it can resolve
some common concerns with such models across a range
of fields. Where previously a change in cross-effect sign
between alternative models or study designs was a major
cause for concern and uncertainty, in many of these cases
it may not indicate that there is a truly different direction
of effect, but rather just that there is a difference in the es-
timated speed of changes. The easiest way to understand
this combined interpretation of stochastic and deterministic
effects is to use a similar visualization as used for the de-
terministic effects only, but using correlated rather than in-
dependent shocks. That is, instead of using some hypothet-
ical intervention that modifies one component alone to plot
the expected time course of changes, we can use the esti-
mated correlation in the system noise to generate appropriate
shocks to each component of the system, in line with what
we would expect to observe empirically. If a shock of mag-
nitude 1.00 is observed in one component, we can expect
the other components to also exhibit a non-zero shock (with
expectation equal to the correlation), and can then plot the
predicted trajectories conditional on this expectation. Such
a plot provides answers to the question “Conditional on ob-
serving a change in one component, what do we expect to
happen to other components of the system?”. The distinction
between the two types of plots is essentially what Gische et
al. (2021) terms “forecasting causal effects of interventions
versus predicting future outcomes”, though here it is handled
in continuous-time as opposed to a regression-based frame-
work. Moreover, I will argue that the magnitude of discrep-
ancy between the two forms should probably influence how
likely we are to accept the causal interpretation.

To try and unpack all this a little more, in the following
I present a brief empirical example of the dynamic relations
between overall satisfaction, health satisfaction, and job sat-
isfaction, over long time scales.

Overall, job, and health satisfaction – correlated shock
interpretation

Using data from version 33.1 of the German socioeco-
nomic panel (GSOEP) (Goebel et al., 2019), I examine the
relations between overall life satisfaction, work satisfaction,
and health satisfaction. These constructs are all measured
approximately yearly, via single item self-report questions.

2000 participants with 20 or more years of complete data
(maximum 33) were randomly selected from the dataset, for
the purposes of this demonstration.

The ctsem (Driver & Voelkle, 2021) software for R is used
to specify and fit a hierarchical continuous-time state-space
model. This has a similar fundamental structure to a sim-
ple first-order VAR model, but is based on continuous rather
than discrete time, and includes random-subject effects and a
basic Gaussian measurement model. Allowing for measure-
ment error ensures that imperfect measurements do not gen-
erate spurious cross-effects (Schuurman & Hamaker, 2019).
To ensure that the system parameters representing dynam-
ics actually reflect dynamics and not stable individual dif-
ferences, starting points and intercept terms are allowed to
(co)vary across subjects using a random-effects approach.
For simplicity of exposition, other system parameters are
assumed constant over subjects, though this is not neces-
sary (For the hierarchical Bayes formulation see Driver &
Voelkle, 2018a, though note that use of non-linear filtering in
modern versions of ctsem also allows for regular maximum
likelihood estimation with complex heterogeneity). The R
script used for fitting is provided in the supplementary ma-
terial, as is randomly generated data from the fitted model,
since it is not possible to provide the GSOEP data.

After fitting the model using maximum likelihood estima-
tion (the ctsem default), using typical approaches to interpre-
tation one may be tempted to look directly at the temporal
coefficients matrix. In this case, examination of the temporal
effects parameters leads to similar conclusions regardless of
whether ctsem is used to fit a continuous or a discrete time
model. Essentially, both life and job satisfaction show nega-
tive effects on the other two constructs (though life on work
is non significant at the .05 level), while health satisfaction
shows positive effects. Such a pattern of results is on face-
value somewhat confusing – for example, why should in-
creases in life satisfaction predict future decreases in health
satisfaction? Moreover, the results conflict with the pattern
of between-person effects, which show the expected strong
positive correlations between baseline levels of the three sat-
isfaction constructs. Such non-concordance of between and
within effect directions is certainly possible, but in the ab-
sence of plausible theory, should probably lead to further in-
terrogation of the model! When we consider not only the de-
terministic changes, but the stochastic changes of the system
as well, the picture starts to make more sense – sources of
random change in the three constructs are highly positively
correlated, such that if we observe a positive change in one of
the constructs, years later we still expect the other constructs
to show positive changes, even after accounting for the neg-
ative temporal coefficients. So, perhaps rather than gener-
ating change in the reverse direction, we could rather inter-
pret the negative coefficients as faster dissipation. One can
understand this by considering life satisfaction, which is a
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rather high level construct and likely to be affected by events
with very different time courses. Some events might have a
large impact but dissipate rapidly, while others could have
a smaller but persistent impact. In this case, it seems that
changes to life satisfaction that are more work related may
tend to dissipate faster than changes which are more health
related. These sorts of patterns are however much clearer
with visualizations as in Figure 7.

Figure 7 is created using functions from ctsem that com-
pute the impulse response over time of the system1. In the
regular case, the impulse is assumed independent and only
affects one construct at one moment in time, raising it by
1.00. So for example, in the top left of Figure 7 we see that
health satisfaction experienced a hypothetical shock in which
the other constructs are (initially) unaffected, and health sat-
isfaction is raised by 1.00. As time progresses, the change to
health satisfaction dissipates towards zero, but in the mean-
time the rise in health satisfaction leads to future rises in
life and work satisfaction. Considering the proposed inter-
pretation which includes the stochastic component, we can
look to the lower left plot and see that whenever a change
of 1.00 in health satisfaction is observed, we should also
expect to see substantial gains in life and work satisfaction
– instead of starting with a change of 0.00 these now start
with a change above 0.50. In the context of such an initial
change, we no longer see a rise in life or work satisfaction at
later time points. Instead, the cross-effects from health satis-
faction cause a slower dissipation of the initial change than
would be expected if we had considered only the auto-effects
of life or work satisfaction.

A similar story occurs if we look at the plots on the right
of Figure 7. In this case, if we interpret the parameters as
though we could directly intervene and adjust work satis-
faction only, the top-right plot will lead the conclusion that
an increase in work satisfaction predicts a decrease in both
health and life satisfaction. However, after accounting for
the fact that the random changes shown by work satisfaction
are typically positively correlated with health and life sat-
isfaction, we instead see that when something causes work
satisfaction to increase, health and life satisfaction also in-
crease, and the change dissipates more quickly than is other-
wise typical for health and life satisfaction processes.

Which interpretation is correct?

Both, and likely neither! The interpretation focusing only
on deterministic effects has been popular because it is rela-
tively simple and offers a hopeful vision for inferring causal-
ity from longitudinal observational data. It really would be
great if from such results we could be confident that decreas-
ing work satisfaction was the key to a happy life! Unfortu-
nately people are right to be skeptical of such simplistic in-
terpretations. In the satisfaction example, the temporal coef-
ficients are estimated in the context of highly correlated ran-

dom changes in the different processes. Although the linear
models in regular use assume it, there is no obvious reason
for us to be confident that the same temporal coefficients ap-
ply in all circumstances. When for example both work and
life satisfaction have been increased by some event, it may
be that the impact on life satisfaction declines quicker than
for typical events which impact life satisfaction. That by no
means implies that when the (apparently) rare event occurs
that only directly impacts work satisfaction, that life satis-
faction is pushed down – indeed this seems on the face of it
somewhat implausible. If we did have sophisticated control
over the different constructs, one could imagine a scenario in
which the random changes to each are induced so they are
uncorrelated, and then we collect data and fit a model. This
would bring our observed system much closer to answering
the question of what happens if we directly intervene on one
component only.

Discrete-time interpretation of correlated shocks

In the empirical example shown, a continuous-time ap-
proach made more sense because the satisfaction constructs
are assumed to function and interact continuously (granu-
larity of space-time concerns notwithstanding). For systems
that do change and interact only in discrete jumps, the same
approach can be used, in which the initial shock is deter-
mined by the correlation of the system noise. The ctsem
software, despite the continuous-time orientation, will also
produce such plots and output when a discrete-time model is
fit. Importantly however, just as with the deterministic coef-
ficients, one cannot leverage a stochastic effect matrix (i.e. G
in Eq. (4)) from a discrete-time model to apply this combined
stochastic / deterministic interpretation when the underlying
process operates continuously. This is because the stochastic
effect matrix in discrete-time represents the covariance after
1 step of time, rather than at time zero.

Conclusion

Advances in data collection technologies have led to an
explosion in longitudinal studies and interest in modeling
approaches. Cross-lagged effect parameters have been of
substantial interest and provided substantial controversy for
many years. In this work I have described two issues that
relate to the interpretation of cross effects, both of which
can be resolved and leveraged by applying more appropri-
ate models such as offered by the ctsem (Driver & Voelkle,
2017) and dynr (Ou et al., 2019) software packages. The
first issue was the known but not widely understood issue

1For continuous-time systems, the differential equation is solved
for each time-interval of interest, while for discrete-time, the tem-
poral effects matrix is simply raised to the power of the number of
time steps taken.



10 DRIVER

Shock to HealthSat Shock to LifeSat Shock to WorkSat

Independent shock
C

orrelated shock

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

−0.25

0.00

0.25

0.50

0.75

1.00

−0.25

0.00

0.25

0.50

0.75

1.00

Years since shock

E
xp

ec
te

d 
ch

an
ge Variable

HealthSat

LifeSat

WorkSat

Figure 7

On the top row a standard interpretation of temporal dynamics effects is shown, with a hypothetical independent shock of
magnitude 1.00 to each construct. In each column a different construct receives the shock. On the lower row there is an
interpretation that focuses on what is typically observed – when there is a shock of 1.00 to a construct, the other constructs
receive a shock in accordance with the estimated system noise correlation. In the top, classical interpretation, there are
negative effects that are difficult to make sense of, while the combined stochastic and deterministic interpretation suggests
these negative effects are more likely just faster dissipation to zero from an initial positively correlated change.

of temporal misspecification, wherein zeroes in the tempo-
ral effects matrix of some discrete-time system, with likely
quite arbitrary time intervals, are taken to represent no di-
rect causal connection between the variables. This is in most
cases an invalid assumption, and is easily rectified by either
shifting to a continuous-time perspective or leveraging the
discrete-time approach for prediction only. Moving beyond
simply highlighting past understanding, I have also described
an alternative approach for understanding cross-lagged ef-
fects, that also accounts for the correlated random changes
occurring in the system. Visualizing the expected trajecto-
ries of the system conditional on some initial shock is not
uncommon in time-series analysis, but considering this ini-
tial shock in correlated rather than independent form is (as
far as I am aware) either new or quite uncommon. Taking
such an approach can, in at least some cases, resolve seem-
ingly quite confusing problems of unexpected effect direc-

tions and concerns over sign-flipping. In addition, this in-
terpretation can also demonstrate that when system noise is
correlated, temporal effects do not necessarily imply a partic-
ularly interesting change. In the empirical example of satis-
faction dynamics, we saw that the apparently positive-effect
of a change in health satisfaction on life satisfaction, could
also be quite reasonably interpreted as a slower dissipation
of some initial correlated change to both. Not uninteresting,
but also perhaps not as headline grabbing as change in one
variable causing later change in another. From at least some
perspectives, a little more nuance and less headline grabbing
may not be a bad thing when it comes to interpretations of
multivariate longitudinal models...
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