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Abstract

Purpose of Review Acceleration of biological processes of aging is hypothesized to drive excess morbidity and mortality in
socially disadvantaged populations. DNA methylation measures of biological aging provide tools for testing this hypothesis.
Recent Findings Next-generation DNA methylation measures of biological aging developed to predict mortality risk and
physiological decline are more predictive of morbidity and mortality than the original epigenetic clocks developed to predict
chronological age. These new measures show consistent evidence of more advanced and faster biological aging in people
exposed to socioeconomic disadvantage and may be able to record the emergence of socially determined health inequalities
as early as childhood. Next-generation DNA methylation measures of biological aging also indicate race/ethnic disparities
in biological aging. More research is needed on these measures in samples of non-Western and non-White populations.
Summary New DNA methylation measures of biological aging open opportunities for refining inference about the causes of
social disparities in health and devising policies to eliminate them. Further refining measures of biological aging by including

more diversity in samples used for measurement development is a critical priority for the field.

Keywords Biological aging - DNA methylation - Epigenetic clock - Social determinants of health

Introduction

Individuals who are socioeconomically disadvantaged or
marginalized based on their racial/ethnic identity tend to
develop aging-related diseases at younger ages and suf-
fer earlier mortality as compared to individuals who are
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wealthier and White [1, 2]. Macro-structural social determi-
nants of health, including racism, classism, sexism, and their
intersections, drive these disparities [3, 4ee]. One mecha-
nism hypothesized to link social determinants of health with
a shorter healthy lifespan is an acceleration of biological
processes of aging [5, 6].

Biological aging is the gradual and progressive decline
in system integrity that occurs with advancing age [7]. This
age-dependent decline in system integrity is thought to
arise from an accumulation of molecular changes, known
as hallmarks, that undermine the functioning of molecular
networks and organ systems, driving vulnerability to dis-
ease and death [8]. Now, the emerging field of geroscience
aims to prevent and treat disease through intervention on
these hallmarks. The core hypothesis of geroscience is that
slowing or reversing the molecular hallmarks of aging can
slow or reverse the decline in system integrity, preventing
or delaying disease and disability [8, 9].

The geroscience field has been pioneered by researchers
studying model organisms under laboratory conditions and
is focused on developing clinical treatments for diseases of
aging [10-13]. However, there are important connections
between the basic biology of aging and social determinants
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of health in humans. Many of the molecular changes that
form the basis of aging, including cell senescence, inflam-
mation, mitochondrial dysfunction, and epigenetic alterna-
tions, are also affected by environmental exposures ranging
from chemical toxicants to social stressors that are concen-
trated in socially disadvantaged populations [14—18]. Gero-
science, therefore, promises new opportunities for under-
standing the causes of social gradients in health and can
help devise new strategies for building aging health equity.

Realizing the promise of geroscience to improve human
health requires an integration of aging biology with behavio-
ral and social sciences [19]. However, studies to investigate
biological aging as a mediator of social determinants of health
have faced the barrier that the molecular changes that form the
biological basis of aging are difficult to observe in epidemio-
logic studies. There is no gold standard measure of aging and,
historically, a little consensus around valid aging biomarkers
[20, 21]. Now, this is beginning to change. A new family of
measurements based on analysis of DNA methylation shows
promise and opens new opportunities for the integration of
research into aging biology and social determinants of health.

In this article, we review progress in applications of
DNA methylation—based measures of biological aging to
study how socially determined inequalities drive disparities
in healthy aging. Early studies applying these new DNA
methylation measures suggest opportunities for refining
inference about the causes of social disparities in health
and devising programs and policies to eliminate them. Spe-
cifically, because these new measures can reveal differences
in the progress and pace of aging decades before chronic
diseases become established, they can help isolate when in
the life course and through what specific exposures health
inequalities in aging become established. In addition, these
new measures can inform the evaluation of interventions to
address health inequalities by providing a readout on the
short- and medium-term effects of programs and policies in
“pre-symptomatic” individuals who have not yet begun to
manifest aging-related disease and disability.

This promise comes within the context of an impor-
tant limitation: DNA methylation measurements of bio-
logical aging have often been developed in convenience
samples not designed to represent particular populations.
Even when samples are socioeconomically representative,
they represent populations that are overwhelmingly White.
This underrepresentation of non-White individuals paral-
lels data gaps noted in human genetics research [22, 23].
Despite the reliance on mostly White samples for measure-
ment development, DNA methylation measures of biologi-
cal aging tend to show similar magnitudes of association
with risk for disease, disability, and mortality across dif-
ferent race/ethnic groups within the USA [24-27]. Where
there are differences, associations tend to be somewhat
stronger in White as compared with non-White samples.

Research in more non-White samples and in diverse
cohorts is needed to better establish the validity of DNA
methylation measures of biological aging in populations of
diverse genetic ancestries and race/ethnic, social identities.
Further development of aging measures in more diverse
samples is a priority.

The remainder of this review is organized as follows: the
“Biological Aging and Social Determinants of Health” sec-
tion provides a conceptual overview of how social deter-
minants of health affect biological aging. The “Quantifica-
tion of Biological Aging for Social Determinants of Health
Research” section introduces approaches to the measurement
of biological aging in social determinants of health research,
with a focus on recently introduced methods based on analy-
sis of DNA methylation. The “DNA Methylation Clocks and
Social Determinants of Health” section reviews recent work
testing how social determinants of health are associated with
DNA methylation measures of aging. A key finding from
these studies is that the new generation of DNA methyla-
tion measures of biological aging derived from analysis of
mortality risk and physiological decline, which are more
predictive of morbidity and mortality, are also more strongly
associated with social determinants of health as compared
with the original epigenetic clocks developed from analysis
of chronological age. The “Challenges and Recommenda-
tions” section reviews limitations of existing DNA methyla-
tion measures of biological aging and makes recommenda-
tions to overcome them with the goal of maximizing the
utility of measures of biological aging in promoting aging
health equity.

Biological Aging and Social Determinants
of Health

How Do Social Determinants of Health Affect
Biological Aging?

Healthspan and lifespan disparities at the intersection of
socioeconomic status and socially constructed dimensions
of race/ethnicity, as well as other identity characteristics, are
profound [4ee, 28]. Exposure to environmental toxicants,
opportunities for restorative leisure and exercise, physi-
cal and psychological safety, social support, and access to
nutritious food and healthcare, among other factors, differ
across these social positions [29, 30]. In turn, these differ-
ences in health-damaging exposures and health-promoting
resources drive biological changes that contribute to more
or less healthy aging [18, 31-35]. Connections among social
identities, mechanisms of inequality, processes of biologi-
cal aging, and disparities in healthy aging are illustrated in
Fig. 1.
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When in Development Do Social Determinants
of Health Affect Biological Aging?

Social determinants of health clearly affect aging in later
life. People living in or near poverty and those with mar-
ginalized racial/ethnic identities experience more rapid
functional decline, earlier accumulation of disease and dis-
ability, and earlier mortality [36—40]. The processes driv-
ing these later-life disparities begin much earlier in the life
course; a range of adverse early-life conditions, including
socioeconomic disadvantage, maltreatment by caregivers,
and unsafe or unstable living conditions, are associated with
a shorter lifespan, earlier onset of aging-related disease, and
more rapid decline in physiological integrity from young
adulthood to midlife [41-45]. A possible mechanism link-
ing early-life social determinants with unhealthy aging is an
acceleration of biological aging.

The biological process of aging, which is characterized
by a breakdown in resilience mechanisms, damage accu-
mulation, and loss of system integrity, is distinct from pro-
grammed development, which assembles reproductively
viable life [46]. However, accumulation of molecular dam-
age commences at the very earliest stages of development,
suggesting the possibility that aging is ongoing almost from
conception [47, 48]. Observations of biological aging at the
early stages of development are few. However, epigenetic
marks associated with aging are removed from genomes
during embryogenesis and begin to accumulate thereafter,
suggesting that aging may indeed begin at the earliest stages
of life [49]. And there is substantial evidence for the effects
of the prenatal environment on outcomes in aging [50].
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However, molecular analysis of aging in early-life humans
remains limited. Blood analysis of telomere length, a bio-
marker of cellular aging [51, 52], indicates more advanced/
faster aging in human infants exposed to perinatal adversity
and in children exposed to early-life adversity [53-57]. But
the science of telomere length as a true biomarker of aging
remains unsettled [58—60]. Even if the early accumulation
of molecular damage represents a disruption to develop-
ment rather than the onset of aging, such damage may still
condition the rate of aging later in life as a consequence of
reduced resilience capacity [61]. Therefore, social determi-
nants of health may affect the biological processes of aging
from very early in development.

Quantification of Biological Aging for Social
Determinants of Health Research

Measurement Approaches Across Biological Levels
of Analysis

There is no gold standard measure of aging [21, 62]. Sev-
eral approaches have been proposed at different levels of
biological organization [63]. A conceptual overview of the
progression of aging across levels of analysis and measures
associated with different levels is presented in Fig. 2.

The level of biological organization most proximate to
disease, disability, and death is commonly measured using
indices of organism-level functional capacities. These
include tests of balance, walking speed, strength, and cog-
nitive performance, as well as summary scores counting
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Fig.2 Levels of analysis of biological aging. Biological aging is the
gradual and progressive decline in system integrity that occurs with
advancing age. The figure illustrates the progression of biological
aging across levels of analysis, from an accumulation of molecu-
lar changes to declines in organ system integrity, functional decline,
disease, disability, and mortality. Measures of biological aging can
be implemented at different levels of analysis: Molecular changes
are commonly measured as omics clocks,! telomere attributes,? and

deficits in functional domains and biological systems known
as frailty indices [64, 65]. Measurements based on deficits
in functional capacities and frailty are most sensitive to
changes occurring at the end of life when aging processes
are advanced.

Beneath this organism-level functional capacity is the
process of decline in system integrity, commonly measured
using indices of organ- and organ-system-level functions.
Broadly, there are three types of these indices. One type
consists of counts of deficits in physiological parameters,
including blood chemistry analytes and organ function
tests, such as allostatic load indices [66, 67]. A second type
consists of blood chemistry clocks and related algorithms
that combine continuous information from multiple blood
chemistry analytes and organ function tests to estimate the
state of system integrity in an organism [68—72]. A third
type uses longitudinal data on blood chemistry analytes and
organ function tests to model the rate of decline in system
integrity, such as Pace of Aging measures [73-75]. Meas-
urements based on organ- and organ-system-level functions
are sensitive to aging-related changes from young adulthood
when trajectories of aging-related decline in system integrity
begin to take shape. These types of measurements all show

mitochondrial DNA copy number.®> Decline in system integrity is
commonly quantified as allostatic load measures* and in blood chem-
istry clocks.’ Functional decline is typically measured with various
frailty indices.® DNA methylation measures of biological aging are
implemented at the molecular level (i.e., omics clocks). Some DNA
methylation measures, including the PhenoAge and GrimAge and the
DunedinPoAm pace of aging, also incorporate information from the
level of organ system integrity

clear evidence of socioeconomic and racial/ethnic disparities
[45,71, 76-78].

Within the geroscience model, accumulating molecu-
lar changes underpin declines in system integrity. These
molecular changes are abundant, and most are challenging
to measure in humans. For example, telomere attrition and
mitochondrial dysfunction are among the hallmarks of aging
and are theorized as mediators of early-life adversity effects
on aging [56, 79]. But telomere- and mitochondria-related
measurements easily quantified in the blood are imperfect
biomarkers of aging hallmarks [58, 59, 80, 81]. Expression
of p16™K4 is linked with cellular senescence, but may be
most informative about aging when measured in specific
lymphocyte subpopulations [82, 83]. The development
of mechanistic biomarkers of aging hallmarks that can be
assayed in studies of humans remains a work in progress
[84, 85].

At present, the most promising molecular-level bio-
markers of aging for clinical and epidemiologic studies
have emerged from “omics”-based approaches that capture
biological changes downstream of mechanistic hallmarks
of aging. Recent developments in proteomic and metabo-
lomic analyses suggest promise [86—88]. Currently, the
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best-established omics-based biomarkers of aging pro-
cesses are based on analysis of genome-wide patterns of
DNA methylation, in particular a family of measurements
broadly known as “clocks” [§9ee].

DNA Methylation Clock Measures of Biological
Aging

DNA methylation marks are chemical tags on the DNA
sequence that contribute to the regulation of gene expres-
sion (90). DNA methylation states are dynamic across the
life course. As humans age, they experience a global loss
of DNA methylation [91]. However, at specific sites on the
genome, methylation marks are both gained and lost with
age [92]. These site-specific changes with aging are so regu-
lar across individuals it is possible, through machine learn-
ing analysis, to develop algorithms that can predict a per-
son’s chronological age from DNA methylation analysis to
a precision of within a few years [93-95]. These algorithms,
introduced in the early 2010s, became known as “clocks.”
Clocks have received substantial attention in aging research
because of the hypothesis that clock ages that are older than
a person’s chronological age indicate an advanced state of
biological aging, whereas clock ages younger than a person’s
chronological age indicate delayed biological aging [§9ee].

DNA methylation clocks have so far progressed through
two generations of development, with further generations
now emerging. The first generation of clocks were devel-
oped by comparing older individuals to younger ones. For
these clocks, the goal of machine learning analysis was to
predict how many years a person had lived up to the time
their DNA were collected, i.e., their chronological age.
These “first-generation” clocks are modestly predictive of
mortality [96], but less consistent in predictions of other
aging-related phenotypes, including disease, disability, and
physiological and functional decline [97-100]. Moreover,
the most precise clocks, those for which chronological age
predictions were closest to the truth, have tended to be less
predictive of health and mortality [101].

The second generation of clocks were developed by
comparing individuals based on survival [25, 71, 102]. For
these second-generation clocks, the goal of machine learn-
ing analysis was to predict how many years a person would
continue to live following the collection of their DNA,
i.e., remaining lifespan. The most prominent of these, the
PhenoAge and GrimAge clocks, include an intermediate
step in which physiological features of aging are modeled
from DNA methylation. In the case of the PhenoAge clock,
mortality risk was first modeled from physiological mark-
ers and chronological age. This first-stage algorithm was
then applied to a new sample in which it was modeled from
DNA methylation to derive the final DNA methylation clock.
In the case of the GrimAge clock, a set of physiological
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indicators were modeled from DNA methylation and then
these DNA methylation predictions along with age, sex,
and a DNA methylation prediction of smoking history
were applied to model mortality. The resulting PhenoAge
and GrimAge clocks are substantially more predictive of
morbidity and mortality as compared to the first-generation
clocks [103, 104].

A third generation of clocks is now emerging, including
measures based on analysis of longitudinal within-person
change [105e¢]. These clocks, referred to as Pace of Aging
measures, are derived from the analysis of trajectories of
physiological decline. The first stage of analysis models
within-person change in a panel of physiological indica-
tors. The second stage composites each participants’ rates
of change across the panel of indictors to form a single index
of their personal rate of physiological decline. Finally, this
composite Pace of Aging is modeled from DNA methylation
measured at the end of the follow-up interval to derive the
final algorithm. Whereas the first- and second-generation
clocks aim to predict how old a person is biological, Pace of
Aging measures aim to predict how fast a person is aging.
First- and second-generation clocks take on values interpret-
able as ages. The Pace of Aging measures take on values
interpretable as rates. The Pace of Aging measures have not
yet received the same level of research attention as the ear-
lier clocks. But the available evidence suggests that they are
comparably predictive of health risks to the other clocks,
although they are not as predictive of mortality as GrimAge
[27, 103, 105ee].

Several other DNA methylation biomarkers have been
developed, including those that measure mortality risk [102]
and mitotic age [106, 107]. In some datasets, these biomark-
ers outperform the second-generation clocks in the predic-
tion of morbidity and mortality [108]. But, to date, these
measures have been less widely used in social determinants
of health research.

The first two generations of DNA methylation clocks and
the Pace of Aging measures are described in Table 1.

DNA Methylation Clocks and Social
Determinants of Health

Research testing associations between social determinants of
health and DNA methylation clocks is still in its early stages.
There are not yet enough studies with consistent methods to
undertake meaningful meta-analyses. However, some pat-
terns are emerging. Specifically, while the first-generation
DNA methylation clocks show weak and inconsistent asso-
ciations with social determinants of health, later generations
of measures show stronger and more consistent associations.
Figure 3 graphs effect sizes for five DNA methylation meas-
ures of aging from analysis of socioeconomic inequality and
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Table 1 DNA methylation measures of biological aging

Measure Criterion Interpretation Discovery sample
First generation clocks: Chronological age predictors
Adults across 82 different
Horvath clock Chronological age datasets across entire
lifespan
Age predicted by DNA Adult volunteers at UC San
methylation Diego, university of

Hannum clock Chronological age

Southern California, and
West China Hospital aged
19-101 years.

Second generation clocks: Mortality age predictors

Blood-chemistry

PhenoAge clock
PhenoAge

Persons surviving

Age

GrimAge clock  Mortality Risk

Age at which average mortality
risk in NHANES III matches the
mortality risk predicted by the
PhenoAge algorithm

Age at which average mortality
risk in the Framingham Heart
Study Offspring cohort matches
predicted mortality risk

Adults from the INCHIANTI
Study aged 21-100 years

Adults from the
Framingham Heart Study
Offspring cohort aged 53-73
years

Pace of aging measures

Change over 12-

DunedinPoAm years of follow-up in
pace of aging 18 system-integrity
biomarkers
Change over 20

DunedinPACE
pace of aging

years of follow-up in
19 system-integrity
biomarkers

Years of physiological decline
experienced per 1 y of calender
time. The expected value in
midlife adults is 1. Values >1
indicate accelerated aging.
Values <1 indicate slowed

aging.

Adults from the Dunedin
Study 1972-3 birth cohort.

The table reports six DNA methylation measures of biological aging. For each measure, the table reports the criterion used to develop the meas-
ure, the discovery sample with which the measure was created, and the interpretation of the measure’s values

racial/ethnic identity. Details of the studies are reported in
Supplementary Table S1. The socioeconomic inequality
measures are varied, ranging from educational attainment
to socioeconomic disadvantage indices to neighborhood
conditions. But the pattern of results is consistent. Overall,
the GrimAge clock and DunedinPoAm Pace of Aging show
the strongest associations with social determinants of health.
Differences in these measures of biological aging between
high and low socioeconomic status groups and between
White and marginalized racial/ethnic groups are consistent
with the hypothesis that social disadvantage contributes to
an acceleration of biological aging.

Studies are also beginning to examine the question of
how early in the life course socioeconomic patterning of
DNA methylation measures of aging may emerge. A recent
review of studies examining how socioeconomic disadvan-
tage related to first-generation DNA methylation clocks in

children found an inconsistent pattern of results [109]. An
analysis of saliva DNA methylation in children that we pub-
lished with the Texas Twin Project identified associations
between both socioeconomic and White vs. Latinx identity
differences in the DunedinPoAm Pace of Aging, but not
the other clocks [110]. More studies of this question are
needed to establish confidence in results. Studies including
blood sample data will be especially valuable. In addition,
new DNA methylation measures of biological aging have
been developed in samples of children, including methods
designed for tissues more readily available in pediatric sam-
ples [111-113]. Studies are needed to establish how these
measures relate to family-level socioeconomic disadvantage.

In sum, based on the limited evidence available so far, the
DNA methylation clocks that are more predictive of mor-
bidity and mortality (i.e., second-generation clocks, third-
generation Pace of Aging measures) are also more strongly
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Fig.3 Standardized effect sizes of associations of socioeconomic
status (SES), education, and racial/ethnic identity with DNA meth-
ylation measures of biological aging. Effect sizes are reported in the
metric of Cohen’s d. Effect sizes reported in the different studies were
harmonized to this metric as follows: For studies that reported com-
parisons between groups, coefficients denominating group differences
were divided by the standard deviation of the aging measure. In stud-
ies not reporting standard deviations [122, 152], we used the standard

associated with social determinants of health. It is not yet
clear when in the life course these associations become
established. However, social gradients in biological aging
may already be evident during childhood. As DNA meth-
ylation data are better integrated into longitudinal studies,
research can begin to test life-course models of how socio-
economic status in childhood and adulthood shape biological
aging [27, 114, 115].

Challenges and Recommendations
Ancestry and Genetic Confounding

The emerging evidence linking social disadvantage to
accelerated biological aging as measured by DNA meth-
ylation clocks must be interpreted within the context of
several limitations. A first limitation has to do with the
potential confounding of DNA methylation measurements
of aging by genetic ancestry. There is a substantial bias in
DNA-based research to study people solely of recent Euro-
pean ancestries [22, 23]. Genetic variation is an important
determinant of DNA methylation states across the genome
[116]. Genetic ancestry differences, therefore, have the
potential to generate artifacts in DNA methylation datasets
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deviations reported by the US Health and Retirement Study [151].
For studies reporting associations between continuous measures of
SES and aging, we first converted coefficients to the metric of Pear-
son’s r and then to Cohen’s d. Conversions to Pearson’s r were made
by dividing the coefficient by the standard deviation of the aging
measure and multiplying by the standard deviation of the SES meas-
ure. Details of the samples and measurements of the studies included
in the figure are reported in Supplementary Table S1

[117]. Genetic variants that affect DNA methylation and
that have a low frequency or are absent in European-ances-
try populations but are more common in other populations,
therefore, have the potential to generate bias or noise in
DNA methylation clock measures of aging.

While genetic ancestry is not the same thing as socially
constructed racial/ethnic identity, people solely of recent
European ancestries are likely to identify as White [118].
The samples used to develop the DNA methylation meas-
ures of aging that are most predictive of health and mor-
tality and most sensitive to social disadvantage (Pheno-
Age and GrimAge clocks and DunedinPoAm) are mostly
or entirely White [24, 25, 105ee]. Establishing that these
widely used clocks represent comparably valid measure-
ments of aging across race/ethnic groups is a priority, as
is the development of DNA methylation measures of aging
from more diverse samples. Progress is now being made
to establish validity across ancestry populations, including
in the multi-ethnic samples in the US Health and Retire-
ment Study [27], and work within non-White samples
such as the American Indian participants of the Strong
Heart Study [119], African-Americans in the Strong Afri-
can American Healthy Adults Project [120], the Chinese
National Twin Registry [121], and others.
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So far, there is limited evidence for genetic ancestry-
related confounding in DNA methylation clock research.
Effect sizes for clock associations with healthy aging phe-
notypes are similar between groups of Black and White
Americans, although effect sizes tend to be slightly larger
for White Americans [24, 25, 27, 122]. The inclusion of
genetic principal components as covariates in the analysis
may provide some correction for ancestry-related artifacts
in DNA methylation data [123]. Going forward, studies that
use DNA methylation clocks to test differences in biologi-
cal aging between socially constructed racial/ethnic identity
groups that differ in genetic ancestry should be cautious in
their interpretation of data. Designs that incorporate meas-
ures of healthy aging endpoints to establish parallel criterion
validity of clocks between ancestry groups can build confi-
dence in inferences that group differences in DNA methyla-
tion measures indicate differences in biological aging.

Longitudinal Analysis and Measurement Reliability

A second limitation is that nearly all research to date relating
social determinants of health to DNA methylation measures
of aging relies on cross-sectional data, at least for measure-
ments of the aging outcomes. (This limitation also applies
to nearly all studies relating DNA methylation measures of
aging to health and mortality.) Research on human develop-
ment establishes that differences in development and aging
between individuals observed from a single time point of
data can be a poor representation of the changes that occur
within individuals over time [124—126]. It remains unclear
whether or how DNA methylation measures of aging may be
modified [127]. Social determinants of health research into
biological aging are premised on the idea that interventions
to modify social circumstances can slow the pace of aging
and contribute to the elimination of health disparities. A
critical next step is for longitudinal studies with repeated
measures of DNA methylation to establish if changes in
social determinants of health are associated with changes in
DNA methylation measures of aging.

Two key challenges facing longitudinal repeated-measures
studies of DNA methylation clocks are assay batch effects and
technical reliability concerns. Batch effects refer to the varia-
tion in measurements arising from features of the measurement
process that are shared among groups of samples measured
together and different between groups of samples measured
separately, such as samples grouped on assay plates or which
DNA extractions or bisulphite conversions were performed
at different times. The issue of batch effects in DNA meth-
ylation has been well described, and a number of corrections
have been proposed [128]. However, these corrections are not
perfect and have the potential to induce biases of their own
[129-131]. Therefore, repeated measures analysis based on

DNA methylation datasets in which time point is fully con-
founded by assay batch must be interpreted with caution.

Even when repeated measures are generated from the same
assay batch (when repeated DNA samples from an individual
are extracted and bisulphite-converted together and assayed
on the same plate), low test—retest reliability of DNA methyla-
tion measurements can present challenges. DNA methylation
arrays generate highly reliable genome-wide measurements
of total DNA methylation [132]. However, at the level of indi-
vidual CpG sites, the dinucleotide locations on the genome at
which DNA methylation levels are assayed, reliabilities are
strikingly poor [133-135]. DNA methylation clocks and Pace
of Aging measures are algorithms that combine information
on the methylation states of dozens to hundreds of CpG sites.
Clock CpGs tend to have somewhat higher reliabilities than
the average [135], and the clocks themselves are substantially
more reliable than the individual CpGs from which they are
composed [136]. Nevertheless, test—retest reliability as meas-
ured by the intraclass correlation coefficient (ICC) for most
clocks is well below 0.9 [136]. This suggests that at least 20%
of the variation in most clock measurements is error or noise.
In an analysis of change across two time points, measurement
error is additive. A consequence is that the statistical signal
arising from an effect of social determinants of health on
biological aging will be significantly diluted. The GrimAge
clock and DunedinPACE measure both have ICCs well above
0.9 and so may be less subject to this limitation [137]. New
methods may substantially increase the reliabilities of other
clocks [136].

Finally, DNA methylation measures that are well estab-
lished to predict morbidity and mortality and correlate with
social determinants of health were developed for blood tis-
sue. Methylation varies substantially by tissue type [138].
However, it may be infeasible to collect blood samples
within many large cohort studies. Blood collections typically
require medical personnel that would further increase the
already high cost of DNA methylation sampling. In contrast,
saliva samples are more amenable to large-scale studies,
including pediatric participants. While some measures have
shown high correspondence between blood and saliva sam-
ples [139], more research is needed to establish associations
of DNA methylation measures of aging taken in non-blood
tissues with healthy aging endpoints, such as morbidity and
mortality, before correlations between these measurements
and social determinants of health can be interpreted with
confidence.

Future Directions
Within the bounds of these challenges, there is clear evi-

dence that socially disadvantaged individuals show more
advanced and faster biological aging as compared to more
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socially advantaged individuals of the same chronological
age. The next steps in research to establish the effects of
social determinants on biological aging involve refinements
to study designs to strengthen internal and external validity.

Using Natural Experiment and Randomized Trial
Designs to Improve Internal Validity

Research relating social determinants of health to DNA
methylation measures of aging consists mostly of correla-
tional study designs with limited ability to establish cau-
sality of associations. So-called “natural experiments,” in
which an event or policy change alters socioeconomic cir-
cumstances for a segment of the population, provide one
path to strengthening causal inference [140]. Changes over
time and/or differences across borders in schooling reforms
mandating additional years of education, minimum wage
thresholds, or other anti-poverty policies are settings in
which to investigate causal effects of social determinants
on biological aging. Randomized controlled trials of anti-
poverty interventions and other programs to address social
determinants represent another promising research direction
[141, 142].

Developing Population-Representative Samples
to Improve External Validity

Participation in biomedical research in general and DNA-
based research, in particular, tends to be lower for persons
with less education and members of a certain race/ethnic
identity groups [143-145]. Underrepresentation of such
groups is especially pronounced in large biobank datasets,
and although there are many strategies to address this chal-
lenge, none are perfect and some may induce their own
biases [146—150]. Oversampling of underrepresented pop-
ulations and the application of survey probability weights
can help generate more population-representative estimates
[151]. However, a concern is that low socioeconomic sta-
tus and non-White individuals who choose to participate in
DNA research may differ from those who do not in ways
that may be consequential for aging, resulting in selection
bias. There has not yet been systematic consideration of
these types of selection bias issues in relation to measures
of biological aging. As the field matures out of its early days,
closer attention is needed to which individuals and groups
may be missing or underrepresented in existing samples.
This need is being recognized and addressed with initiatives
such as National Institute on Aging and National Institute
on Minority Health and Health Disparities priority funding
for social epigenomics research (https://www.nimhd.nih.
gov/programs/extramural/investigator-initiated-research/
socioepigenomics-grants.html). Data generated under this
initiative and other datasets from underrepresented groups

@ Springer

and populations should receive the careful attention to evalu-
ate the extent to which findings accumulated in samples of
mostly White and higher socioeconomic status individuals
replicate in different and more diverse samples.

Conclusion

Novel measures quantified in DNA methylation are being
used to capture processes of biological aging in ways that
may inform why and how social inequality is associated with
aging-related disparities in health. These new tools have the
potential to help evaluate how exposures contribute to risk in
people who are still “pre-symptomatic” and ultimately may
provide surrogate end points for testing the effects of social
programs on healthy aging decades before effects on aging-
related chronic disease or mortality would be apparent.
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