
https://doi.org/10.1007/s40572-022-00338-8

ENVIRONMENT AND AGING (X GAO AND A BACCARRELLI, SECTION EDITORS)

Integrating DNA Methylation Measures of Biological Aging into Social 
Determinants of Health Research

Laurel Raffington1,2 · Daniel W. Belsky3,4

Accepted: 10 January 2022 
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract
Purpose of Review Acceleration of biological processes of aging is hypothesized to drive excess morbidity and mortality in 
socially disadvantaged populations. DNA methylation measures of biological aging provide tools for testing this hypothesis.
Recent Findings Next-generation DNA methylation measures of biological aging developed to predict mortality risk and 
physiological decline are more predictive of morbidity and mortality than the original epigenetic clocks developed to predict 
chronological age. These new measures show consistent evidence of more advanced and faster biological aging in people 
exposed to socioeconomic disadvantage and may be able to record the emergence of socially determined health inequalities 
as early as childhood. Next-generation DNA methylation measures of biological aging also indicate race/ethnic disparities 
in biological aging. More research is needed on these measures in samples of non-Western and non-White populations.
Summary New DNA methylation measures of biological aging open opportunities for refining inference about the causes of 
social disparities in health and devising policies to eliminate them. Further refining measures of biological aging by including 
more diversity in samples used for measurement development is a critical priority for the field.
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Introduction

Individuals who are socioeconomically disadvantaged or 
marginalized based on their racial/ethnic identity tend to 
develop aging-related diseases at younger ages and suf-
fer earlier mortality as compared to individuals who are 

wealthier and White [1, 2]. Macro-structural social determi-
nants of health, including racism, classism, sexism, and their 
intersections, drive these disparities [3, 4••]. One mecha-
nism hypothesized to link social determinants of health with 
a shorter healthy lifespan is an acceleration of biological 
processes of aging [5, 6].

Biological aging is the gradual and progressive decline 
in system integrity that occurs with advancing age [7]. This 
age-dependent decline in system integrity is thought to 
arise from an accumulation of molecular changes, known 
as hallmarks, that undermine the functioning of molecular 
networks and organ systems, driving vulnerability to dis-
ease and death [8]. Now, the emerging field of geroscience 
aims to prevent and treat disease through intervention on 
these hallmarks. The core hypothesis of geroscience is that 
slowing or reversing the molecular hallmarks of aging can 
slow or reverse the decline in system integrity, preventing 
or delaying disease and disability [8, 9].

The geroscience field has been pioneered by researchers 
studying model organisms under laboratory conditions and 
is focused on developing clinical treatments for diseases of 
aging [10–13]. However, there are important connections 
between the basic biology of aging and social determinants 

This article is part of the Topical Collection on Environment and 
Aging

 * Daniel W. Belsky 
 Daniel.Belsky@columbia.edu

 Laurel Raffington 
 laurel.raffington@austin.utexas.edu

1 Department of Psychology, University of Texas at Austin, 
Austin, TX, USA

2 Population Research Center, The University of Texas 
at Austin, Austin, TX, USA

3 Department of Epidemiology, Columbia University 
Mailman School of Public Health, 722 W 168th St. Rm 413, 
New York, NY 10032, USA

4 Robert N Butler Columbia Aging Center, Columbia 
University Mailman School of Public Health, New York, NY, 
USA

/ Published online: 18 February 2022

Current Environmental Health Reports (2022) 9:196–210

1 3

http://crossmark.crossref.org/dialog/?doi=10.1007/s40572-022-00338-8&domain=pdf


of health in humans. Many of the molecular changes that 
form the basis of aging, including cell senescence, inflam-
mation, mitochondrial dysfunction, and epigenetic alterna-
tions, are also affected by environmental exposures ranging 
from chemical toxicants to social stressors that are concen-
trated in socially disadvantaged populations [14–18]. Gero-
science, therefore, promises new opportunities for under-
standing the causes of social gradients in health and can 
help devise new strategies for building aging health equity.

Realizing the promise of geroscience to improve human 
health requires an integration of aging biology with behavio-
ral and social sciences [19]. However, studies to investigate 
biological aging as a mediator of social determinants of health 
have faced the barrier that the molecular changes that form the 
biological basis of aging are difficult to observe in epidemio-
logic studies. There is no gold standard measure of aging and, 
historically, a little consensus around valid aging biomarkers 
[20, 21]. Now, this is beginning to change. A new family of 
measurements based on analysis of DNA methylation shows 
promise and opens new opportunities for the integration of 
research into aging biology and social determinants of health.

In this article, we review progress in applications of 
DNA methylation–based measures of biological aging to 
study how socially determined inequalities drive disparities 
in healthy aging. Early studies applying these new DNA 
methylation measures suggest opportunities for refining 
inference about the causes of social disparities in health 
and devising programs and policies to eliminate them. Spe-
cifically, because these new measures can reveal differences 
in the progress and pace of aging decades before chronic 
diseases become established, they can help isolate when in 
the life course and through what specific exposures health 
inequalities in aging become established. In addition, these 
new measures can inform the evaluation of interventions to 
address health inequalities by providing a readout on the 
short- and medium-term effects of programs and policies in 
“pre-symptomatic” individuals who have not yet begun to 
manifest aging-related disease and disability.

This promise comes within the context of an impor-
tant limitation: DNA methylation measurements of bio-
logical aging have often been developed in convenience 
samples not designed to represent particular populations. 
Even when samples are socioeconomically representative, 
they represent populations that are overwhelmingly White. 
This underrepresentation of non-White individuals paral-
lels data gaps noted in human genetics research [22, 23]. 
Despite the reliance on mostly White samples for measure-
ment development, DNA methylation measures of biologi-
cal aging tend to show similar magnitudes of association 
with risk for disease, disability, and mortality across dif-
ferent race/ethnic groups within the USA [24–27]. Where 
there are differences, associations tend to be somewhat 
stronger in White as compared with non-White samples. 

Research in more non-White samples and in diverse 
cohorts is needed to better establish the validity of DNA 
methylation measures of biological aging in populations of 
diverse genetic ancestries and race/ethnic, social identities. 
Further development of aging measures in more diverse 
samples is a priority.

The remainder of this review is organized as follows: the 
“Biological Aging and Social Determinants of Health” sec-
tion provides a conceptual overview of how social deter-
minants of health affect biological aging. The “Quantifica-
tion of Biological Aging for Social Determinants of Health 
Research” section introduces approaches to the measurement 
of biological aging in social determinants of health research, 
with a focus on recently introduced methods based on analy-
sis of DNA methylation. The “DNA Methylation Clocks and 
Social Determinants of Health” section reviews recent work 
testing how social determinants of health are associated with 
DNA methylation measures of aging. A key finding from 
these studies is that the new generation of DNA methyla-
tion measures of biological aging derived from analysis of 
mortality risk and physiological decline, which are more 
predictive of morbidity and mortality, are also more strongly 
associated with social determinants of health as compared 
with the original epigenetic clocks developed from analysis 
of chronological age. The “Challenges and Recommenda-
tions” section reviews limitations of existing DNA methyla-
tion measures of biological aging and makes recommenda-
tions to overcome them with the goal of maximizing the 
utility of measures of biological aging in promoting aging 
health equity.

Biological Aging and Social Determinants 
of Health

How Do Social Determinants of Health Affect 
Biological Aging?

Healthspan and lifespan disparities at the intersection of 
socioeconomic status and socially constructed dimensions 
of race/ethnicity, as well as other identity characteristics, are 
profound [4••, 28]. Exposure to environmental toxicants, 
opportunities for restorative leisure and exercise, physi-
cal and psychological safety, social support, and access to 
nutritious food and healthcare, among other factors, differ 
across these social positions [29, 30]. In turn, these differ-
ences in health-damaging exposures and health-promoting 
resources drive biological changes that contribute to more 
or less healthy aging [18, 31–35]. Connections among social 
identities, mechanisms of inequality, processes of biologi-
cal aging, and disparities in healthy aging are illustrated in 
Fig. 1.
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When in Development Do Social Determinants 
of Health Affect Biological Aging?

Social determinants of health clearly affect aging in later 
life. People living in or near poverty and those with mar-
ginalized racial/ethnic identities experience more rapid 
functional decline, earlier accumulation of disease and dis-
ability, and earlier mortality [36–40]. The processes driv-
ing these later-life disparities begin much earlier in the life 
course; a range of adverse early-life conditions, including 
socioeconomic disadvantage, maltreatment by caregivers, 
and unsafe or unstable living conditions, are associated with 
a shorter lifespan, earlier onset of aging-related disease, and 
more rapid decline in physiological integrity from young 
adulthood to midlife [41–45]. A possible mechanism link-
ing early-life social determinants with unhealthy aging is an 
acceleration of biological aging.

The biological process of aging, which is characterized 
by a breakdown in resilience mechanisms, damage accu-
mulation, and loss of system integrity, is distinct from pro-
grammed development, which assembles reproductively 
viable life [46]. However, accumulation of molecular dam-
age commences at the very earliest stages of development, 
suggesting the possibility that aging is ongoing almost from 
conception [47, 48]. Observations of biological aging at the 
early stages of development are few. However, epigenetic 
marks associated with aging are removed from genomes 
during embryogenesis and begin to accumulate thereafter, 
suggesting that aging may indeed begin at the earliest stages 
of life [49]. And there is substantial evidence for the effects 
of the prenatal environment on outcomes in aging [50]. 

However, molecular analysis of aging in early-life humans 
remains limited. Blood analysis of telomere length, a bio-
marker of cellular aging [51, 52], indicates more advanced/
faster aging in human infants exposed to perinatal adversity 
and in children exposed to early-life adversity [53–57]. But 
the science of telomere length as a true biomarker of aging 
remains unsettled [58–60]. Even if the early accumulation 
of molecular damage represents a disruption to develop-
ment rather than the onset of aging, such damage may still 
condition the rate of aging later in life as a consequence of 
reduced resilience capacity [61]. Therefore, social determi-
nants of health may affect the biological processes of aging 
from very early in development.

Quantification of Biological Aging for Social 
Determinants of Health Research

Measurement Approaches Across Biological Levels 
of Analysis

There is no gold standard measure of aging [21, 62]. Sev-
eral approaches have been proposed at different levels of 
biological organization [63]. A conceptual overview of the 
progression of aging across levels of analysis and measures 
associated with different levels is presented in Fig. 2.

The level of biological organization most proximate to 
disease, disability, and death is commonly measured using 
indices of organism-level functional capacities. These 
include tests of balance, walking speed, strength, and cog-
nitive performance, as well as summary scores counting 

Fig. 1  The social environment 
is associated with multiple 
environments that affect health 
across the lifespan. Epidemio-
logical research has docu-
mented healthspan and lifespan 
disparities across dimensions 
of social identities (e.g., social 
class and racial/ethnic identity; 
blue circle). Mechanisms of 
social inequality (e.g., income 
inequality and policing; red 
circle) lead to disparate access 
to health-enhancing resources 
(e.g., nutrition, leisure; yellow 
circle) and disparate exposure 
to health risks (e.g., toxicants, 
stress) between social identities. 
These cause social disparities in 
aging-related disease, disability, 
and mortality (green circle), 
which may reinforce dimensions 
of social inequality in the next 
generation
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deficits in functional domains and biological systems known 
as frailty indices [64, 65]. Measurements based on deficits 
in functional capacities and frailty are most sensitive to 
changes occurring at the end of life when aging processes 
are advanced.

Beneath this organism-level functional capacity is the 
process of decline in system integrity, commonly measured 
using indices of organ- and organ-system-level functions. 
Broadly, there are three types of these indices. One type 
consists of counts of deficits in physiological parameters, 
including blood chemistry analytes and organ function 
tests, such as allostatic load indices [66, 67]. A second type 
consists of blood chemistry clocks and related algorithms 
that combine continuous information from multiple blood 
chemistry analytes and organ function tests to estimate the 
state of system integrity in an organism [68–72]. A third 
type uses longitudinal data on blood chemistry analytes and 
organ function tests to model the rate of decline in system 
integrity, such as Pace of Aging measures [73–75]. Meas-
urements based on organ- and organ-system-level functions 
are sensitive to aging-related changes from young adulthood 
when trajectories of aging-related decline in system integrity 
begin to take shape. These types of measurements all show 

clear evidence of socioeconomic and racial/ethnic disparities 
[45, 71, 76–78].

Within the geroscience model, accumulating molecu-
lar changes underpin declines in system integrity. These 
molecular changes are abundant, and most are challenging 
to measure in humans. For example, telomere attrition and 
mitochondrial dysfunction are among the hallmarks of aging 
and are theorized as mediators of early-life adversity effects 
on aging [56, 79]. But telomere- and mitochondria-related 
measurements easily quantified in the blood are imperfect 
biomarkers of aging hallmarks [58, 59, 80, 81]. Expression 
of  p16INK4a is linked with cellular senescence, but may be 
most informative about aging when measured in specific 
lymphocyte subpopulations [82, 83]. The development 
of mechanistic biomarkers of aging hallmarks that can be 
assayed in studies of humans remains a work in progress 
[84, 85].

At present, the most promising molecular-level bio-
markers of aging for clinical and epidemiologic studies 
have emerged from “omics”-based approaches that capture 
biological changes downstream of mechanistic hallmarks 
of aging. Recent developments in proteomic and metabo-
lomic analyses suggest promise [86–88]. Currently, the 

Fig. 2  Levels of analysis of biological aging. Biological aging is the 
gradual and progressive decline in system integrity that occurs with 
advancing age. The figure illustrates the progression of biological 
aging across levels of analysis, from an accumulation of molecu-
lar changes to declines in organ system integrity, functional decline, 
disease, disability, and mortality. Measures of biological aging can 
be implemented at different levels of analysis: Molecular changes 
are commonly measured as omics clocks,1 telomere attributes,2 and 

mitochondrial DNA copy number.3 Decline in system integrity is 
commonly quantified as allostatic load  measures4 and in blood chem-
istry clocks.5 Functional decline is typically measured with various 
frailty indices.6 DNA methylation measures of biological aging are 
implemented at the molecular level (i.e., omics clocks). Some DNA 
methylation measures, including the PhenoAge and GrimAge and the 
DunedinPoAm pace of aging, also incorporate information from the 
level of organ system integrity
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best-established omics-based biomarkers of aging pro-
cesses are based on analysis of genome-wide patterns of 
DNA methylation, in particular a family of measurements 
broadly known as “clocks” [89••].

DNA Methylation Clock Measures of Biological 
Aging

DNA methylation marks are chemical tags on the DNA 
sequence that contribute to the regulation of gene expres-
sion (90). DNA methylation states are dynamic across the 
life course. As humans age, they experience a global loss 
of DNA methylation [91]. However, at specific sites on the 
genome, methylation marks are both gained and lost with 
age [92]. These site-specific changes with aging are so regu-
lar across individuals it is possible, through machine learn-
ing analysis, to develop algorithms that can predict a per-
son’s chronological age from DNA methylation analysis to 
a precision of within a few years [93–95]. These algorithms, 
introduced in the early 2010s, became known as “clocks.” 
Clocks have received substantial attention in aging research 
because of the hypothesis that clock ages that are older than 
a person’s chronological age indicate an advanced state of 
biological aging, whereas clock ages younger than a person’s 
chronological age indicate delayed biological aging [89••].

DNA methylation clocks have so far progressed through 
two generations of development, with further generations 
now emerging. The first generation of clocks were devel-
oped by comparing older individuals to younger ones. For 
these clocks, the goal of machine learning analysis was to 
predict how many years a person had lived up to the time 
their DNA were collected, i.e., their chronological age. 
These “first-generation” clocks are modestly predictive of 
mortality [96], but less consistent in predictions of other 
aging-related phenotypes, including disease, disability, and 
physiological and functional decline [97–100]. Moreover, 
the most precise clocks, those for which chronological age 
predictions were closest to the truth, have tended to be less 
predictive of health and mortality [101].

The second generation of clocks were developed by 
comparing individuals based on survival [25, 71, 102]. For 
these second-generation clocks, the goal of machine learn-
ing analysis was to predict how many years a person would 
continue to live following the collection of their DNA, 
i.e., remaining lifespan. The most prominent of these, the 
PhenoAge and GrimAge clocks, include an intermediate 
step in which physiological features of aging are modeled 
from DNA methylation. In the case of the PhenoAge clock, 
mortality risk was first modeled from physiological mark-
ers and chronological age. This first-stage algorithm was 
then applied to a new sample in which it was modeled from 
DNA methylation to derive the final DNA methylation clock. 
In the case of the GrimAge clock, a set of physiological 

indicators were modeled from DNA methylation and then 
these DNA methylation predictions along with age, sex, 
and a DNA methylation prediction of smoking history 
were applied to model mortality. The resulting PhenoAge 
and GrimAge clocks are substantially more predictive of 
morbidity and mortality as compared to the first-generation 
clocks [103, 104].

A third generation of clocks is now emerging, including 
measures based on analysis of longitudinal within-person 
change [105••]. These clocks, referred to as Pace of Aging 
measures, are derived from the analysis of trajectories of 
physiological decline. The first stage of analysis models 
within-person change in a panel of physiological indica-
tors. The second stage composites each participants’ rates 
of change across the panel of indictors to form a single index 
of their personal rate of physiological decline. Finally, this 
composite Pace of Aging is modeled from DNA methylation 
measured at the end of the follow-up interval to derive the 
final algorithm. Whereas the first- and second-generation 
clocks aim to predict how old a person is biological, Pace of 
Aging measures aim to predict how fast a person is aging. 
First- and second-generation clocks take on values interpret-
able as ages. The Pace of Aging measures take on values 
interpretable as rates. The Pace of Aging measures have not 
yet received the same level of research attention as the ear-
lier clocks. But the available evidence suggests that they are 
comparably predictive of health risks to the other clocks, 
although they are not as predictive of mortality as GrimAge 
[27, 103, 105••].

Several other DNA methylation biomarkers have been 
developed, including those that measure mortality risk [102] 
and mitotic age [106, 107]. In some datasets, these biomark-
ers outperform the second-generation clocks in the predic-
tion of morbidity and mortality [108]. But, to date, these 
measures have been less widely used in social determinants 
of health research.

The first two generations of DNA methylation clocks and 
the Pace of Aging measures are described in Table 1.

DNA Methylation Clocks and Social 
Determinants of Health

Research testing associations between social determinants of 
health and DNA methylation clocks is still in its early stages. 
There are not yet enough studies with consistent methods to 
undertake meaningful meta-analyses. However, some pat-
terns are emerging. Specifically, while the first-generation 
DNA methylation clocks show weak and inconsistent asso-
ciations with social determinants of health, later generations 
of measures show stronger and more consistent associations. 
Figure 3 graphs effect sizes for five DNA methylation meas-
ures of aging from analysis of socioeconomic inequality and 
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racial/ethnic identity. Details of the studies are reported in 
Supplementary Table S1. The socioeconomic inequality 
measures are varied, ranging from educational attainment 
to socioeconomic disadvantage indices to neighborhood 
conditions. But the pattern of results is consistent. Overall, 
the GrimAge clock and DunedinPoAm Pace of Aging show 
the strongest associations with social determinants of health. 
Differences in these measures of biological aging between 
high and low socioeconomic status groups and between 
White and marginalized racial/ethnic groups are consistent 
with the hypothesis that social disadvantage contributes to 
an acceleration of biological aging.

Studies are also beginning to examine the question of 
how early in the life course socioeconomic patterning of 
DNA methylation measures of aging may emerge. A recent 
review of studies examining how socioeconomic disadvan-
tage related to first-generation DNA methylation clocks in 

children found an inconsistent pattern of results [109]. An 
analysis of saliva DNA methylation in children that we pub-
lished with the Texas Twin Project identified associations 
between both socioeconomic and White vs. Latinx identity 
differences in the DunedinPoAm Pace of Aging, but not 
the other clocks [110]. More studies of this question are 
needed to establish confidence in results. Studies including 
blood sample data will be especially valuable. In addition, 
new DNA methylation measures of biological aging have 
been developed in samples of children, including methods 
designed for tissues more readily available in pediatric sam-
ples [111–113]. Studies are needed to establish how these 
measures relate to family-level socioeconomic disadvantage.

In sum, based on the limited evidence available so far, the 
DNA methylation clocks that are more predictive of mor-
bidity and mortality (i.e., second-generation clocks, third-
generation Pace of Aging measures) are also more strongly 

Table 1  DNA methylation measures of biological aging

The table reports six DNA methylation measures of biological aging. For each measure, the table reports the criterion used to develop the meas-
ure, the discovery sample with which the measure was created, and the interpretation of the measure’s values
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associated with social determinants of health. It is not yet 
clear when in the life course these associations become 
established. However, social gradients in biological aging 
may already be evident during childhood. As DNA meth-
ylation data are better integrated into longitudinal studies, 
research can begin to test life-course models of how socio-
economic status in childhood and adulthood shape biological 
aging [27, 114, 115].

Challenges and Recommendations

Ancestry and Genetic Confounding

The emerging evidence linking social disadvantage to 
accelerated biological aging as measured by DNA meth-
ylation clocks must be interpreted within the context of 
several limitations. A first limitation has to do with the 
potential confounding of DNA methylation measurements 
of aging by genetic ancestry. There is a substantial bias in 
DNA-based research to study people solely of recent Euro-
pean ancestries [22, 23]. Genetic variation is an important 
determinant of DNA methylation states across the genome 
[116]. Genetic ancestry differences, therefore, have the 
potential to generate artifacts in DNA methylation datasets 

[117]. Genetic variants that affect DNA methylation and 
that have a low frequency or are absent in European-ances-
try populations but are more common in other populations, 
therefore, have the potential to generate bias or noise in 
DNA methylation clock measures of aging.

While genetic ancestry is not the same thing as socially 
constructed racial/ethnic identity, people solely of recent 
European ancestries are likely to identify as White [118]. 
The samples used to develop the DNA methylation meas-
ures of aging that are most predictive of health and mor-
tality and most sensitive to social disadvantage (Pheno-
Age and GrimAge clocks and DunedinPoAm) are mostly 
or entirely White [24, 25, 105••]. Establishing that these 
widely used clocks represent comparably valid measure-
ments of aging across race/ethnic groups is a priority, as 
is the development of DNA methylation measures of aging 
from more diverse samples. Progress is now being made 
to establish validity across ancestry populations, including 
in the multi-ethnic samples in the US Health and Retire-
ment Study [27], and work within non-White samples 
such as the American Indian participants of the Strong 
Heart Study [119], African-Americans in the Strong Afri-
can American Healthy Adults Project [120], the Chinese 
National Twin Registry [121], and others.

Fig. 3  Standardized effect sizes of associations of socioeconomic 
status (SES), education, and racial/ethnic identity with DNA meth-
ylation measures of biological aging. Effect sizes are reported in the 
metric of Cohen’s d. Effect sizes reported in the different studies were 
harmonized to this metric as follows: For studies that reported com-
parisons between groups, coefficients denominating group differences 
were divided by the standard deviation of the aging measure. In stud-
ies not reporting standard deviations [122, 152], we used the standard 

deviations reported by the US Health and Retirement Study [151]. 
For studies reporting associations between continuous measures of 
SES and aging, we first converted coefficients to the metric of Pear-
son’s r and then to Cohen’s d. Conversions to Pearson’s r were made 
by dividing the coefficient by the standard deviation of the aging 
measure and multiplying by the standard deviation of the SES meas-
ure. Details of the samples and measurements of the studies included 
in the figure are reported in Supplementary Table S1
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So far, there is limited evidence for genetic ancestry-
related confounding in DNA methylation clock research. 
Effect sizes for clock associations with healthy aging phe-
notypes are similar between groups of Black and White 
Americans, although effect sizes tend to be slightly larger 
for White Americans [24, 25, 27, 122]. The inclusion of 
genetic principal components as covariates in the analysis 
may provide some correction for ancestry-related artifacts 
in DNA methylation data [123]. Going forward, studies that 
use DNA methylation clocks to test differences in biologi-
cal aging between socially constructed racial/ethnic identity 
groups that differ in genetic ancestry should be cautious in 
their interpretation of data. Designs that incorporate meas-
ures of healthy aging endpoints to establish parallel criterion 
validity of clocks between ancestry groups can build confi-
dence in inferences that group differences in DNA methyla-
tion measures indicate differences in biological aging.

Longitudinal Analysis and Measurement Reliability

A second limitation is that nearly all research to date relating 
social determinants of health to DNA methylation measures 
of aging relies on cross-sectional data, at least for measure-
ments of the aging outcomes. (This limitation also applies 
to nearly all studies relating DNA methylation measures of 
aging to health and mortality.) Research on human develop-
ment establishes that differences in development and aging 
between individuals observed from a single time point of 
data can be a poor representation of the changes that occur 
within individuals over time [124–126]. It remains unclear 
whether or how DNA methylation measures of aging may be 
modified [127]. Social determinants of health research into 
biological aging are premised on the idea that interventions 
to modify social circumstances can slow the pace of aging 
and contribute to the elimination of health disparities. A 
critical next step is for longitudinal studies with repeated 
measures of DNA methylation to establish if changes in 
social determinants of health are associated with changes in 
DNA methylation measures of aging.

Two key challenges facing longitudinal repeated-measures 
studies of DNA methylation clocks are assay batch effects and 
technical reliability concerns. Batch effects refer to the varia-
tion in measurements arising from features of the measurement 
process that are shared among groups of samples measured 
together and different between groups of samples measured 
separately, such as samples grouped on assay plates or which 
DNA extractions or bisulphite conversions were performed 
at different times. The issue of batch effects in DNA meth-
ylation has been well described, and a number of corrections 
have been proposed [128]. However, these corrections are not 
perfect and have the potential to induce biases of their own 
[129–131]. Therefore, repeated measures analysis based on 

DNA methylation datasets in which time point is fully con-
founded by assay batch must be interpreted with caution.

Even when repeated measures are generated from the same 
assay batch (when repeated DNA samples from an individual 
are extracted and bisulphite-converted together and assayed 
on the same plate), low test–retest reliability of DNA methyla-
tion measurements can present challenges. DNA methylation 
arrays generate highly reliable genome-wide measurements 
of total DNA methylation [132]. However, at the level of indi-
vidual CpG sites, the dinucleotide locations on the genome at 
which DNA methylation levels are assayed, reliabilities are 
strikingly poor [133–135]. DNA methylation clocks and Pace 
of Aging measures are algorithms that combine information 
on the methylation states of dozens to hundreds of CpG sites. 
Clock CpGs tend to have somewhat higher reliabilities than 
the average [135], and the clocks themselves are substantially 
more reliable than the individual CpGs from which they are 
composed [136]. Nevertheless, test–retest reliability as meas-
ured by the intraclass correlation coefficient (ICC) for most 
clocks is well below 0.9 [136]. This suggests that at least 20% 
of the variation in most clock measurements is error or noise. 
In an analysis of change across two time points, measurement 
error is additive. A consequence is that the statistical signal 
arising from an effect of social determinants of health on 
biological aging will be significantly diluted. The GrimAge 
clock and DunedinPACE measure both have ICCs well above 
0.9 and so may be less subject to this limitation [137]. New 
methods may substantially increase the reliabilities of other 
clocks [136].

Finally, DNA methylation measures that are well estab-
lished to predict morbidity and mortality and correlate with 
social determinants of health were developed for blood tis-
sue. Methylation varies substantially by tissue type [138]. 
However, it may be infeasible to collect blood samples 
within many large cohort studies. Blood collections typically 
require medical personnel that would further increase the 
already high cost of DNA methylation sampling. In contrast, 
saliva samples are more amenable to large-scale studies, 
including pediatric participants. While some measures have 
shown high correspondence between blood and saliva sam-
ples [139], more research is needed to establish associations 
of DNA methylation measures of aging taken in non-blood 
tissues with healthy aging endpoints, such as morbidity and 
mortality, before correlations between these measurements 
and social determinants of health can be interpreted with 
confidence.

Future Directions

Within the bounds of these challenges, there is clear evi-
dence that socially disadvantaged individuals show more 
advanced and faster biological aging as compared to more 
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socially advantaged individuals of the same chronological 
age. The next steps in research to establish the effects of 
social determinants on biological aging involve refinements 
to study designs to strengthen internal and external validity.

Using Natural Experiment and Randomized Trial 
Designs to Improve Internal Validity

Research relating social determinants of health to DNA 
methylation measures of aging consists mostly of correla-
tional study designs with limited ability to establish cau-
sality of associations. So-called “natural experiments,” in 
which an event or policy change alters socioeconomic cir-
cumstances for a segment of the population, provide one 
path to strengthening causal inference [140]. Changes over 
time and/or differences across borders in schooling reforms 
mandating additional years of education, minimum wage 
thresholds, or other anti-poverty policies are settings in 
which to investigate causal effects of social determinants 
on biological aging. Randomized controlled trials of anti-
poverty interventions and other programs to address social 
determinants represent another promising research direction 
[141, 142].

Developing Population‑Representative Samples 
to Improve External Validity

Participation in biomedical research in general and DNA-
based research, in particular, tends to be lower for persons 
with less education and members of a certain race/ethnic 
identity groups [143–145]. Underrepresentation of such 
groups is especially pronounced in large biobank datasets, 
and although there are many strategies to address this chal-
lenge, none are perfect and some may induce their own 
biases [146–150]. Oversampling of underrepresented pop-
ulations and the application of survey probability weights 
can help generate more population-representative estimates 
[151]. However, a concern is that low socioeconomic sta-
tus and non-White individuals who choose to participate in 
DNA research may differ from those who do not in ways 
that may be consequential for aging, resulting in selection 
bias. There has not yet been systematic consideration of 
these types of selection bias issues in relation to measures 
of biological aging. As the field matures out of its early days, 
closer attention is needed to which individuals and groups 
may be missing or underrepresented in existing samples. 
This need is being recognized and addressed with initiatives 
such as National Institute on Aging and National Institute 
on Minority Health and Health Disparities priority funding 
for social epigenomics research (https:// www. nimhd. nih. 
gov/ progr ams/ extra mural/ inves tigat or- initi ated- resea rch/ 
socio epige nomics- grants. html). Data generated under this 
initiative and other datasets from underrepresented groups 

and populations should receive the careful attention to evalu-
ate the extent to which findings accumulated in samples of 
mostly White and higher socioeconomic status individuals 
replicate in different and more diverse samples.

Conclusion

Novel measures quantified in DNA methylation are being 
used to capture processes of biological aging in ways that 
may inform why and how social inequality is associated with 
aging-related disparities in health. These new tools have the 
potential to help evaluate how exposures contribute to risk in 
people who are still “pre-symptomatic” and ultimately may 
provide surrogate end points for testing the effects of social 
programs on healthy aging decades before effects on aging-
related chronic disease or mortality would be apparent.
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