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A B S T R A C T

Cognitive ability and educational success predict positive outcomes across the lifespan, from higher earnings to
better health and longevity. The shared positive outcomes associated with cognitive ability and education are
emblematic of the strong interconnections between them. Part of the observed associations between cognitive
ability and education, as well as their links with wealth, morbidity and mortality, are rooted in genetic variation.
The current review evaluates the contribution of decades of behavioural genetic research to our knowledge and
understanding of the biological and environmental basis of the association between cognitive ability and edu-
cation. The evidence reviewed points to a strong genetic basis in their association, observed from middle
childhood to old age, which is amplified by environmental experiences. In addition, the strong stability and
heritability of educational success are not driven entirely by cognitive ability. This highlights the contribution of
other educationally relevant noncognitive characteristics. Considering both cognitive and noncognitive skills as
well as their biological and environmental underpinnings will be fundamental in moving towards a compre-
hensive, evidence-based model of education.

1. Introduction

Education is one of the major investments undertaken by con-
temporary society and the level of educational attainment has been
steadily increasing worldwide (OECD, 2018). Educational attainment is
a measure of human capital and is indicative of the skills of a popula-
tion. As countries’ economies gradually shift away from mass produc-
tion towards becoming knowledge economies, governments are eager
to increase the skills and welfare of the population through educational
attainment (OECD, 2018). Higher levels of educational attainment are
associated with higher employment rates, better job prospects and
higher earnings (Furnham and Cheng, 2016; Oreopoulos and Salvanes,
2011; Ritchie and Bates, 2013).

The positive life outcomes associated with educational attainment
extend far beyond wealth and professional success, to include physical
and mental health, wellbeing and even longevity (Cutler and Lleras-
Muney, 2012; Montez and Hayward, 2014). Similar long-term positive
associations with health and wealth are observed for general cognitive
ability: higher cognitive skills have been linked to higher earnings (Daly

et al., 2015; Kalechstein et al., 2003), better physical and mental health
(Batty et al., 2016; Baune et al., 2010; Latvala et al., 2016; Mollon et al.,
2018; Snyder et al., 2015) and lower mortality (Deary et al., 2010). The
shared positive life outcomes associated with cognitive ability and
educational attainment are likely to be intrinsically linked via the
strong connection between these two traits. Indeed, extant research has
identified general cognitive ability as the major source of variation in
academic performance, measured as both school achievement and how
long people spend in education –i.e. educational attainment (Krapohl
et al., 2014; Mackintosh and Mackintosh, 2011).

Part of the observed associations between cognitive ability and
education, as well as their links with wealth, morbidity and mortality,
are rooted in genetic variation. Converging evidence from decades of
twin research and, more recently, molecular genetic studies has shown
that general cognitive ability and educational attainment are heritable,
highly polygenic, and that shared genetic factors account for part of
their observed covariation (Deary et al., 2019; Hill et al., 2018; Lee
et al., 2018; Plomin and Von Stumm, 2018; Tucker-Drob and Briley,
2014). While there are several parallels in the development and
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manifestations of cognitive ability and educational attainment, emble-
matic of which is their close association across the lifespan, there are
also key distinctions that characterize the development, origins and
expression of both traits.

The aim of the current work is to review and evaluate how genetic
research has contributed to furthering our knowledge and under-
standing of the associations between cognitive ability and education
during development. We discuss the copious amount of knowledge that
has emerged from behavioural genetic studies of cognitive and educa-
tional skills and their links. First, we review the wealth of research that
has applied the classical twin design to examine the origins of the as-
sociations between cognitive ability and academic performance (i.e.
academic achievement and educational attainment). We highlight si-
milarities as well as differences in the aetiology and developmental
profiles that characterize these two broad dimensions. Second, we ex-
amine how molecular genetic research, particularly recent cutting-edge
advances in DNA-based methods, has furthered our knowledge and
understanding of cognitive ability, academic performance and their
association. At every stage we discuss the strengths and limitations of
applying each methodological approach to the investigation of in-
dividual differences in human behaviour and cognitive ability. Third,
given that education extends beyond academic performance, we briefly
widen our focus to discussing research on the association between
cognitive ability, academic performance and other important educa-
tionally relevant ‘noncognitive’ traits. We conclude by discussing gaps
in the current state of knowledge and future directions. In particular,
we evaluate how the knowledge that has emerged from behavioural
genetic research can help the field of education to move towards a more
comprehensive, biologically oriented model of individual differences in
cognitive ability and learning.

2. Measuring general cognitive ability and academic performance

Success in education has traditionally been closely associated with
general cognitive ability. The first test of general cognitive ability
(Binet, 1905) was developed with the aim of predicting individual
differences in educational outcomes, which remains one of the main
targets of cognitive tests to date (Deary et al., 2007). Contemporary
standardized tests of intelligence derive from this early measure and
assess performance across multiple dimensions. For instance, each test
featured in the most widely adopted intelligence test batteries for adults
and children (e.g. the Wechsler Scale of Intelligence and the Wechsler
Intelligence Scale for Children; Wechsler, 2003, 2011), measures a
specific dimension of cognitive functioning. These specific dimensions
of cognitive functioning include skills such as verbal ability, spatial
ability, non-verbal reasoning, processing speed, and memory. Although
separable, these dimensions have been shown to correlate with one
another, thus resulting in a measure of general cognitive ability.

General cognitive ability, also termed intelligence or g, is a psy-
chometric construct that emerged at the beginning of the twentieth
century from observations that almost all cognitive abilities correlate
substantially and positively (Spearman, 1904). In other words, in-
dividuals performing highly in one cognitive test are also likely to show
good performance in other tests of cognitive abilities (Carroll, 1993). g
indexes this covariation observed between cognitive tests. One way of
interpreting this factor is that it represents individual differences in the
domain-general abilities to plan, learn, think abstractly, and solve
problems, all skills that contribute to successful completion of cognitive
tests (Deary, 2013). Spearman’s g factor correlates very strongly
(> .80) with a g factor derived from the first unrotated principal
component across multiple cognitive tests and with the score obtained
from a full-scale intelligence quotient (IQ) test (Ceci, 1991).

As such, in the current review we consider these three formats as
measures of g. The g factor is universally observed (Lubinski, 2004), is
stable across the lifespan (e.g. r = .63 between g scores taken at age 11
and again 68 years later; Deary et al., 2000), and predicts important life

outcomes including wealth, morbidity and mortality. Although the
developmental stability of g increases sharply from mid-childhood
(Tucker-Drob and Briley, 2014), modest rank-based stability is ob-
served from a very young age: g measured in four-year-olds was found
to correlate modestly (∼.20) with g a decade later, largely for genetic
reasons (Arden et al., 2014).

Standardized tests have also been developed to assess academic
performance. These tests measure performance in key academic skills
such as reading fluency, reading comprehension, computational skills
and problem solving (Kaufman et al., 2012). It has been argued that
standardized tests of academic achievement are an index of cognitive
ability rather than a true measure of academic performance, and that
classroom performance, in the form of teacher assessments or cumu-
lative grades, might constitute a more realistic assessment of academic
performance (e.g. Kaufman et al., 2012). However, correlations be-
tween numerous standardized tests of academic abilities and non-verbal
intelligence are estimated at ∼ .50 (Guez et al., 2018), suggesting that
these measures are not entirely alike. Furthermore, recent work ex-
amining the concordance between standardized exam scores and tea-
cher assessments throughout compulsory education has highlighted the
strong overlap between these two formats (correlations of> .70) and
their comparable associations with further educational attainment
(Rimfeld et al., 2019). Consequently, in the current review we consider
both standardized tests of academic achievement and teacher assess-
ments, in addition to educational attainment, as useful indices of aca-
demic performance.

3. Psychological research into the association between cognitive
ability and academic performance

The observation that g reliably predicts educational outcomes is a
fascinating phenomenon that has been extensively studied in the lit-
erature. Taken at any point across development, g shares a moderate to
strong correlation with academic achievement, ranging from .40 to .80
(Bartels et al., 2002b; Deary et al., 2007; Sternberg et al., 2007). A
meta-analysis of 240 independent samples including over 100,000
participants found a population correlation of .54 between intelligence
and school grades; effect sizes were similar across subjects, ranging
between .49 for mathematics and science and .41 for languages, with
two exceptions: music (.19) and sports (.09) (Roth et al., 2015). The
same meta-analysis showed that the magnitude of the correlation be-
tween intelligence and school grades increased with age, from .45
during the primary school years to .58 in secondary school, and effects
were consistent across gender (Roth et al., 2015).

Strong associations between cognitive abilities and academic
achievement have also been observed longitudinally. One of the largest
prospective studies exploring the association between g and academic
achievement, including over 70,000 children from England, found that
g at age 11 correlated strongly with achievement at age 16 and pre-
dicted individual differences in every school subject, accounting for
between 59 % of the variance in mathematics to 18 % of the variance in
Art and Design (Deary et al., 2007). Even more strikingly, tests of
cognitive abilities taken very early in life are valid predictors of aca-
demic achievement and abilities later in development. Longitudinal
investigations have found moderate associations between early cogni-
tive skills and achievement several years later. g measured at four years
of age was found to predict individual differences in mathematics
ability and achievement eight years later with moderate effect sizes
(Malanchini et al., 2016). Similarly, another study found that non-
verbal intelligence and working memory measured at age 5 correlated
moderately (r = .30–.40) with individual differences in literacy and
numeracy six years later (Alloway and Alloway, 2010).

The observed long-term predictive power of cognitive ability mea-
sured early in development suggests that gmight have a causal effect on
academic performance over development (Watkins et al., 2007). Stu-
dies have supported this proposition, finding for example that fluid
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intelligence (gf) had a positive influence on academic achievement,
particularly on quantitative abilities, and that this influence was
stronger during childhood and early adolescence (Ferrer and McArdle,
2004). However, the observed associations between early g and later
academic performance are likely to conceal reciprocal links: students
with higher cognitive skills are likely to achieve better grades and
consequently spend more time in education, but also spending more
time in education fosters cognitive development.

A recent meta-analysis of the effects of education on cognitive
ability including data from over 600,000 individuals supports the
proposition that time spent in education exerts a positive causal effect
on the development of cognitive skills (Ritchie and Tucker-Drob, 2018).
Leveraging quasi-experimental designs (i.e. longitudinal studies, com-
pulsory policy changes and regression discontinuity), the meta-analysis
found that the effect of one additional year in education corresponded
to gains of between 1 and 5 standardized IQ points, depending on the
design considered. These gains in cognitive ability elicited by additional
time spent in education were observed for a general cognitive ability
composite as well as when tests of fluid and crystallized intelligence
were considered separately. Furthermore, the effects persisted across
the lifespan (Ritchie and Tucker-Drob, 2018). These findings are in line
with those of an earlier review (Ceci, 1991).

In line with Spearman’s proposition of a domain-specific effect of
education on cognitive skills (Spearman, 1927), another study found
that the improvements associated with longer time spent in education
were observed for specific cognitive abilities rather than for g (Ritchie
et al., 2015a, 2015b). In addition, education was found to have a
beneficial impact on intelligence in old age, and particularly so for
individuals scoring lower on an IQ test in childhood, but no effect on
lower-level cognitive abilities such as processing speed (Ritchie et al.,
2013). These findings point to the importance of examining domain-
general as well as domain-specific effects of the association between
cognitive ability and academic performance – note that there were too
few studies examining domain-specificity for a useful meta-analysis to
be performed on this question.

Surprisingly few studies have examined the reciprocal links between
g and academic achievement over multiple developmental stages ap-
plying formal longitudinal designs (Deary and Johnson, 2010). One
such study found that cognitive ability measured in early childhood
predicted achievement in reading and mathematics and, in turn,
mathematics achievement in early adolescence predicted adolescent g
(McCoach et al., 2017). While this study included multiple measures of
reading and mathematics achievement over development, g was only
assessed once before the start of schooling and once in adolescence,
preventing conclusions on the reciprocal effects of g on achievement
and vice versa over a more fine-grained time scale. Evidence for the
positive effect of reading on cognitive development comes from a study
observing that reading comprehension contributed to growth in verbal
ability over and above general cognitive ability from age 8–16 (Cain
and Oakhill, 2011). A further study applied cross-lagged panel analysis
to examine the reciprocal links between achievement in reading and
mathematics and g measured at three ages during primary school,
providing evidence for reciprocal influences (Cowan et al., 2018).

Therefore, cognitive ability and academic performance share a
substantial, reciprocal association that emerges early in development.
But what are the biological and environmental mechanisms underlying
this association? Behavioural genetic research has investigated the
origins of individual differences in cognitive abilities and academic
performance, and of their links, across the lifespan applying multiple
methodologies. In the sections that follow we begin by reviewing and
evaluating evidence from several decades of twin studies before moving
on to examine recent evidence from molecular genetic research.

4. Twin studies of the genetic and environmental underpinnings
of cognitive ability, academic performance and their association

In education, a distinction has traditionally been assumed in which
ability is inherent to an individual whereas achievement, which means
‘by dint of effort’, was thought to be acquired. Translating this to ge-
netic and environment aetiologies, it was taken for granted that
achievement was environmental in origin, whereas ability was genetic,
which is what led to consternation about ability. Studies using geneti-
cally informative methodologies have radically altered these assump-
tions (Plomin and Deary, 2015). The relative contribution of genetic
and environmental factors to variation in a trait has been classically
estimated using twin and family studies (Polderman et al., 2015).

4.1. The twin method: A brief overview

The twin design capitalises on the genetic relatedness between two
types of twin pairs to estimate the extent to which differences between
individuals in a given trait are accounted for by genetic and environ-
mental factors. The method is grounded in the fact that monozygotic
twins share one hundred percent of their genetic makeup, and dizygotic
twins share on average fifty percent of the genes that differ between
individuals. Furthermore, the method makes the key assumption that
both types of twins who are raised in the same family home share their
rearing environments to approximately the same extent (Conley et al.,
2013; Kendler et al., 1993b). By comparing how similar monozygotic
and dizygotic twins are for a given trait, it is possible, under these as-
sumptions, to calculate the extent to which differences between in-
dividuals in that population at that particular time are due to genetic
and environmental influences.

The twin method estimates the relative contribution of three main
sources of variation in the population: heritability, shared environment
and nonshared environment. Heritability describes the amount of var-
iance in a trait that can be attributed to genetic differences in a given
population, and can be roughly estimated by doubling the difference in
the correlation between the monozygotic and dizygotic twin pairs
(Martin and Eaves, 1977). Shared environment describes the extent to
which twins raised in the same family resemble each other beyond their
genetic similarity. Finally, non-shared environment describes environ-
mental variance that does not contribute to similarities between twin
pairs, which in formal structural equation models can also incorporate
measurement error.

4.2. Twin studies of the genetic and environmental underpinnings of general
cognitive ability and academic performance

Research applying the twin design has consistently shown that ge-
netic differences between individuals play an important role in ex-
plaining variation in g. The heritability of g –the extent to which genetic
differences between individuals explain differences in their observed
cognitive performance– has been found to increase substantially from
early childhood to adulthood. Genetic factors were found to explain
around 20 % of individual differences in g in infancy, around 40 % in
late childhood, about 60 % of the variation in g in adolescence and
adulthood (Haworth et al., 2010), and to reach approximately 80 % in
older adulthood (Plomin and Deary, 2015). The observation of a linear
increase in the heritability of g over development has been replicated
across numerous samples cross-culturally (Tucker-Drob et al., 2013).

Two main theoretical accounts, not mutually exclusive, have been
proposed as potential explanations for the observed increase in the
heritability of g over development. The first sees transactional models
(Tucker-Drob and Briley, 2014; Tucker-Drob et al., 2013), rooted in
gene-environment correlation (Plomin et al., 1977), as the main me-
chanism through which children experience, evoke, select and con-
solidate their genetic propensity through environmental experiences,
resulting in amplified genetic effects on cognitive ability (Tucker-Drob
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et al., 2013; Plomin and DeFries, 1985).
Gene-environment correlation describes the processes through

which individuals experience environments that correlate with their
genotype, rather than being exposed to random environmental experi-
ences. This can happen through three mechanisms. First, passive pro-
cesses: children and adolescents tend to grow up with their parents who
shape the rearing environment on the basis of their own genotype,
which they share with their offspring. Second, evocative processes: in-
dividuals may elicit their experiences on the basis of their partly ge-
netically influenced traits, such as dispositions and characteristics.
Third, active processes: individuals actively select and modify their
experiences based on their genetic propensities, dispositions and ap-
petites (Plomin et al., 1977; Plomin, 2014).

An alternative account proposes that novel genetic influences might
come into play over development and result in the observed increase in
the heritability of cognitive ability. Although novel genetic influences
on cognitive ability emerged in early childhood (Tucker-Drob and
Briley, 2014). At the same time, strong genetic stability, indexed by
substantial genetic correlation (rA), has been observed in g from age 7 to
age 12 (rA = .75), as well as between g at age 11 and age 69 (rA = .62;
Deary et al., 2012), suggesting a greater role of transactional models in
accounting for the increased heritability of g over the lifespan (Tucker-
Drob et al., 2013).

Academic performance is also highly heritable. Studies found that
genetic differences explain a substantial portion of individual differ-
ences in academic achievement at every stage of compulsory education
(Kovas et al., 2007; Shakeshaft et al., 2013; Tosto et al., 2013), as well
as in standardized tests of academic abilities, such as for example
reading and mathematics (Malanchini et al., 2019, 2017; Petrill et al.,
2012; Tosto et al., 2017; Tucker-Drob et al., 2016), whether assessed by
tests or teacher ratings (Rimfeld et al., 2019). A meta-analysis of the
relative contribution of genetic, shared environmental and nonshared
environmental influences on academic achievement in primary school
found evidence for the importance of genetic variation at all ages cross-
culturally (de Zeeuw et al., 2015).

Genetic differences between students have also been found to play a
major role in students’ choice of academic career beyond compulsory
education, for example, A-level choice and achievement (Rimfeld et al.,
2016a). After compulsory education, students in England and Wales can
choose to continue studying for two years in preparation for university,
freely selecting the subjects they wish to focus on. At the end of these
two years, students are required to take ‘A-level’ exams, which are
fundamental for admission to university. Genetic factors were found to
account not only for differences in A-level grades, but also for the
choice of continuing on to A-levels and for specific subject choices
(Rimfeld et al., 2016a). Similarly, genetic factors were found to account
for variation in several measures of educational attainment, including
the choice of enrolling in an undergraduate degree and university
success (Smith-Woolley et al., 2018).

4.3. Different developmental trajectories characterize the aetiology of g and
academic performance

It is reasonable to assume that the high heritability of academic
achievement observed at every stage in development is largely ex-
plained by its robust association with g. However, this proposition is not
in line with evidence showing that academic achievement in literacy
and numeracy in the early school years is significantly more heritable
than g (Kovas et al., 2013). As the heritability of g increases over de-
velopment (Plomin and Deary, 2015), by early adolescence g and
achievement show comparable heritabilities. The difference in the
heritability of g and achievement in the early school years lessens the
plausibility of the proposition that genetic variation in g is the major
source underlying the high heritability of academic achievement. An
even stronger line of evidence for the high heritability of academic
achievement, independent of g, comes from a recent large-scale

longitudinal investigation of the genetic and environmental stability of
academic achievement over compulsory education in England and
Wales (Rimfeld et al., 2018b). Applying a longitudinal twin design, the
study showed that academic achievement is highly stable over com-
pulsory education and its stability is largely due to genetic influences
even after accounting for g (Rimfeld et al., 2018b). Although genetic
innovation was observed at every stage, indicating new genetic effects
coming into play, these effects were not specific to each developmental
stage, instead they were passed on to the following developmental
stages.

Research examining the continuity of genetic and environmental
influences on g over development also reports strong genetic stability,
as largely the same genetic effects are found to contribute to variation
in cognition over the lifespan. Results of a meta-analysis of 21 studies
from 15 independent samples from early childhood to older adulthood
showed that the stability of g increases sharply from early to middle
childhood and remains high throughout the lifespan (Tucker-Drob and
Briley, 2014). Coupled with a sharp increase in stability observed
around age 7, the meta-analysis observed shifts in the extent to which
genetic and environmental influences contributed to the covariation
between measures of g over time. Shared environment played a sig-
nificant role in explaining early stability, but its contribution was
greatly reduced almost to zero in late adolescence. On the contrary,
genetic factors accounted for a small proportion of the stability of early
g, but their contribution increased sharply during middle childhood and
remained stable throughout adolescence and adulthood (Tucker-Drob
and Briley, 2014). This is in line with earlier evidence on the genetic
stability of intelligence from age 5–12 in a Dutch sample (Bartels et al.,
2002a). Finally, the contribution of nonshared environmental influ-
ences to the stability of g was negligible throughout childhood and
adolescence, but increased to moderate during adulthood (Tucker-Drob
and Briley, 2014).

The findings are consistent with those observed for academic
achievement over compulsory education, particularly when considering
that schooling was measured over four waves from the age of 7 to the
age of 16 (Rimfeld et al., 2018b). Over this developmental time, the
stability of both academic achievement and g is mostly due to genetic
variation, with shared environmental variation playing a modest role
and nonshared environment having a negligible effect (Rimfeld et al.,
2018b; Tucker-Drob and Briley, 2014). Studies that have examined the
stability of academic achievement (Luo et al., 2010) and of specific
academic abilities, including reading comprehension (Malanchini et al.,
2017), teacher ratings of reading ability (Harlaar et al., 2007) and
teacher ratings of mathematics ability (Luo et al., 2011) over a shorter
time span provide support for the central role of genetic variation.

Therefore, as represented in Fig. 1, the phenotypic stability of both g
and academic achievement increases modestly from mid-childhood to
late adolescence (e.g. Roth et al., 2015) and is largely accounted for by
genetic factors. Shared environmental influences account for a much
lower proportion of the covariance between measures over time,
amounting to about one third of the magnitude of genetic effects when
considering academic achievement (Rimfeld et al., 2018b) . Nonshared
environments are largely specific to each measurement occasion and do
not contribute consistently to the stability of achievement and g from
childhood to late adolescence and emerging adulthood. The same pat-
tern of results is observed for different academic domains and does not
seem to be explained by the association between g and achievement, as
the phenotypic and genetic stability of achievement remained high
even after statistically accounting for g (Rimfeld et al., 2018b). This
suggests that several other, partly genetically influenced, factors con-
tribute to the genetic stability in academic achievement beyond g
(Krapohl et al., 2014; Malanchini et al., 2019). This will be discussed in
more detail below.
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4.4. Twin studies of the association between general cognitive ability and
academic performance: pleiotropic effects are observed throughout
development

The association between academic performance and g is also stable
over development and twin research has shown that genetic factors
explain a substantial portion of their links across the lifespan (Calvin
et al., 2012; Johnson et al., 2009). In one of the first investigations into
the genetic and environmental underpinnings of the covariation be-
tween cognitive ability and academic performance, Thompson et al.
(1991, p. 164) state: ‘…the covariance between ability and achievement is
primarily genetically determined … ability-achievement discrepancies are
due to environmental differences.’ (Thompson et al., 1991). Over the
following nearly three decades numerous studies have supported this
general conclusion about the association between cognitive ability and
academic performance.

Strong correlations between g and academic performance are ob-
served when considering both standardized tests of academic abilities,
e.g. reading comprehension and mathematics computation abilities
(Harlaar et al., 2009) as well as for more general measures of academic
performance such as exam scores and teacher grades (Kovas et al.,
2007). In the same way that the associations between g and reading,
and g and mathematics, are characterized by comparable moderate
effect sizes (∼.40), these phenotypic correaltions are largely mediated
by genetic factors and to a lesser extent by shared environment for both
academic domains (Kovas et al., 2005). The proportion of the pheno-
typic correlation that is due to genetic factors is known as the bivariate
heritability, and it is also possible to calculate bivariate estimates for the
shared and nonshared environments. In a sample of nearly 6000 7-year-
old twins, the bivariate heritability observed for g and mathematics was
.83 and that for g and reading .65, with partly overlapping confidence
intervals around the estimates, indicating that genetic factors ac-
counted for over 60 % of the correlation between g and academic
achievement in different domains. Shared environment accounted for
27 % of the correlation between g and reading and 9 % of that between
g and mathematics. Nonshared environment accounted for 8 % of the
correlation between g and both academic subjects (Kovas et al., 2005).

Substantial pleiotropic effects, indexed by the genetic correlation

between traits, were observed between academic achievement in all
domains and g (.44–.69; Rimfeld et al., 2015). Pleiotropy (genes in-
fluence multiple traits; Lynch and Walsh, 1998) between g and aca-
demic achievement is not specific to middle childhood and adolescence
but observed consistently across development. Findings from a study
leveraging whole population cohorts across two countries, the United
Kingdom and the Netherlands, provide general support for the sub-
stantial role of genetic covariance in accounting for the observed cor-
relation between g and academic achievement (Calvin et al., 2012).
Moreover, pleiotropic effects between g and achievement have been
observed longitudinally between early g and mathematics achievement
at age 12 (Malanchini et al., 2016).

Therefore, a substantial part of the genetic variance accounting for
individual differences in g is also implicated in academic performance.
The notion that overlapping genetic effects contribute to individual
differences in all aspects of cognitive ability and learning is summarized
by the ‘generalist genes’ account of learning abilities and disabilities
(Plomin and Kovas, 2005). The theory, grounded in the two notions of
pleiotropy (one gene affects many traits) and polygenicity (several
genes influence one trait), proposes that genetic influences on different
cognitive and academic abilities and disabilities overlap. Although this
account emerged largely as a function of findings from twin studies
(Davis et al., 2008; Kovas et al., 2005), more recent studies applying
molecular genetic methods have provided support for the general ef-
fects of genes implicated in cognitive ability and academic achievement
(Bulik-Sullivan et al., 2015; Lee et al., 2018; Rimfeld et al., 2015;
Trzaskowski et al., 2013).

Although the substantial genetic overlap between cognitive and
educational phenotypes is consistent with widespread pleiotropy be-
tween multiple educationally relevant and cognitive traits, it is possible
that alternative biological mechanisms may underlie their covariation.
Indeed, the observed genetic correlations might reflect genetic caus-
ality, whereby genetic factors influence one trait, for example g, and in
turn g influences another trait, for example academic performance
(Ligthart and Boomsma, 2012). Longitudinal genetically-informative
models, such as for example cross-lagged panel analyses (Malanchini
et al., 2017) will be able to shed light on the mechanisms supporting the
nearly ubiquitous pattern of genetic associations observed across

Fig. 1. How genetic (A), shared environmental (C) and nonshared environmental (E) factors play different roles in accounting for the stability of g, academic
performance and of their association over development. Genetic influences, which can encompass gene-environment interplay (correlations and interactions),
account for the majority of the observed developmental stability. Shared environmental factors, likely to be stable experiences, are consistently found to account for a
lesser part of the developmental stability. On the other hand, non-shared environmental factors are rarely observed to be implicated in the stability of g and academic
performance over childhood and adolescence, indicating that their influences are mostly unsystematic.
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multiple aspects of cognitive ability and educational achievement. Re-
search that has applied this methodology in the context of education,
focusing on the association between academic performance and moti-
vation, provides support for the existence of both mechanisms. The
study found that reading achievement and motivation correlated sub-
stantially for genetic reasons (supporting pleiotropic mechanisms). In
addition, the two traits mutually influenced each other longitudinally,
and these reciprocal links were partly genetic in origin (supporting
genetic causality; Malanchini et al., 2017). However, no research to
date has applied this type of design to the investigation of the asso-
ciations between cogntive ability and academic performance over de-
velopment.

4.5. The role of individual-specific and family-wide environmental factors

Other studies have focused on examining the role of environmental
influences on cognitive ability and academic performance over time
applying genetically informative longitudinal methods. One such study
leveraged monozygotic twin differences with a cross-lagged design to
explore the role of nonshared environmental influences on the asso-
ciation between g and academic performance (Ritchie et al., 2015b).
Because monozygotic twins are genetically identical and grow up in the
same home environment, the monozygotic twin differences design al-
lows for the examination of environmental influences that are unique to
each twin, free from the confounds of genetic and shared environmental
effects (Vitaro et al., 2009). Examining discordances between mono-
zygotic twin pairs in reading and g longitudinally, this study found
support for nonshared environmental effects on reading ability having a
weak causal effect on g at subsequent developmental stages. These re-
sults support the view that individual-specific environmental effects on
reading ability are partly stable over time and transfer to more general
cognitive skills resulting in improved performance over development
(Ritchie et al., 2015b). However, the use of a state-trait model, which
accounts more strongly for the phenotypic stability of reading and of
intelligence, resulted in substantially lower estimates of the potential
effects of reading ability on broader cognitive skills (Bailey and
Littlefield, 2017).

Other studies have provided support for the role of shared en-
vironmental factors in accounting for the association between cognitive
abilities and academic performance. As previously discussed, the role of
shared environmental influences on the stability of g and academic
performance and of their developmental association is generally found
to be small, particularly from mid-childhood. However, studies have
found evidence for stronger effects in early childhood (Lemelin et al.,
2007) as well as in countries characterized by less standardized edu-
cational experiences (Petrill and Wilkerson, 2000). Interestingly, al-
though the proportion of the cross-sectional and longitudinal links ac-
counted for by shared environmental influences (bivariate shared
environmentality) is relatively small, shared environmental correlations
(i.e., independent of their phenotypic effect) tend to be strong between
measures of academic performance and cognitive abilities, suggesting
that shared environmental influences are translational across domains
of cognitive ability and learning and are stable over time. For example,
a recent meta-analysis of twin studies of the association between
reading and mathematics abilities and disabilities found a meta-analytic
estimate of .90 for the shared environmental correlation between
reading and mathematics (Daucourt et al., 2019).

4.6. Assumptions and limitations of twin studies

The wealth of knowledge that has emerged from twin studies of
cognitive ability, academic performance and their associations needs to
be evaluated in light of the limitations that apply to the methodology.
The twin method is based on several assumptions. First, the equal en-
vironments assumption is the idea that environmental similarity is the
same for monozygotic and dizygotic twin pairs growing up in the same

family (Knopik et al., 2016). Studies have observed that monozygotic
twins are more likely to share analogous environmental experiences
than dizygotic twins: they tend to be treated more similarly and to more
often share friends. Nevertheless, studies assessing the impact of
sharing more environmental experiences did not find this to have
substantial influence on the degree of phenotypic concordance (Conley
et al., 2013; Kendler et al., 1993a).

A second assumption of the twin method is random mating: people
are assumed to mate at random, and not with other people that re-
semble them. In reality this assumption is violated as people tend to
mate with people who resemble them both phenotypically and geneti-
cally, a concept known as assortative mating (Ask et al., 2013) Assor-
tative mating is especially strong for cognitive and educational traits
(Abdellaoui et al., 2015), and thus it could impact the outcomes of
research using the twin method on these variables. The most basic as-
sumption of the model is that the coefficient of relatedness is 1 (i.e. 100
% genetic similarity) between monozygotic twin pairs and .5 (i.e. 50 %
similarity on average) between dizygotic twin pairs. Assortative mating
will increase the genetic similarity between dizygotic twins but cannot
increase genetic similarity between monozygotic twins because they are
already 100 % similar genetically. In this way, assortative mating will
lead to underestimate genetic effects and overestimate shared en-
vironmental effects (Røysamb and Tambs, 2016). Although evidence of
assortative mating is well established particularly for cognitive and
educational phenotypes, given the weak estimates of shared environ-
mental effects evinced by the association between g and achievement
from middle childhood, this limitation is unlikely to have had a major
impact on the research reviewed so far.

A third limitation of the twin method is the inability of classical
twin models to disentangle the interplay between genotype and en-
vironment. The interplay of genes and environments happens through
two main processes: gene-environment correlation (GE correlation,
described earlier) and gene-by-environment interaction (GE interac-
tion). GE interaction is observed when the effects of a person’s genotype
on a trait vary as a function of the environment and, vice versa, when
environmental effects are more or less prominent depending on a per-
son’s genotype (Duncan and Keller, 2011). This interaction between
genes and environments can influence the variance in a trait in-
dependently from the individual prediction that genes and environ-
ments have on that trait (Manuck and McCaffery, 2014). For example,
students who have a genetic predisposition to be high achievers may
thrive disproportionately if they are raised in environments that pro-
vide enriched stimulation. Conversely, the same students may be
especially vulnerable to less optimal environments, despite their sub-
stantial genetic predisposition to be high achievers. The evidence for
this GE interaction effect, where low parental socioeconomic status
yields lower heritability estimates for cognitive abilities –dubbed the
“Scarr-Rowe interaction”, since it was first noted by Scarr (1971) and
Rowe et al. (1999)– is mixed. A large meta-analysis suggests that it is
largely culture-dependent: substantial interaction effects were observed
in samples across the United States but not in European samples
(Tucker-Drob and Bates, 2016).

One additional limitation that is likely to impact not only twin
studies specifically, but all cohort studies more generally is the possi-
bility that the sample is subject to self-selection biases and therefore not
represent the larger population. It is particularly important to consider
this limitation when studying early development in twin samples since
evidence suggests that twins might be at a slight disadvantage during
perinatal development as compared to singletons (Martin et al., 1997).
However, evidence from a whole population twin study across two
countries found highly consistent patterns of results to those obtained
from cohort studies of twins on the association between cognitive
ability and academic performance (Calvin et al., 2012).

A fifth limitation of research applying the twin method is that it
does not identify the specific genes involved in the observed variation
and covariation between traits. However, molecular genetic studies are
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not subject to this limitation, and can estimate the genetic influences on
traits and their covariations free from most of the assumptions and
limitations reviewed above. Furthermore, very recently, studies using
DNA-based methods have started addressing the role of gene-environ-
ment interplay in variation in cognitive ability and academic perfor-
mance (Bates et al., 2018; Cheesman et al., 2019; Kong et al., 2018;
Selzam et al., 2019). Although this special issue is mostly concerned
with reviewing and evaluating evidence that has emerged from twin
research, in the section that follows we provide an overview of the most
recent findings on the genetics of the association between cognitive
ability and academic performance stemming from studies that have
applied DNA-based methods, which largely confirm the results of twin
studies. We evaluate the advantages and limitations of this fast-growing
field of research.

5. Moving into the molecular space: the genetics of cognitive
ability and academic performance using DNA-based methods

Early research concerned with identifying genetic variants asso-
ciated with individual differences in behaviour started by focusing on
examining the role of single or a small number of genetic variants, often
selected on the basis of their biological or functional significance. This
candidate gene approach, at odds with the substantial polygenicity
observed for all behavioural traits, yielded several false positive results
that lacked solid replications (Chabris et al., 2012). One of the major
problems with the candidate gene approach was its reliance on small
sample sizes, which yielded little power to detect associations of small
effect size: the associations that were found, therefore, suffered from
the “winner’s curse”, where they were likely to be inflated and due to
chance. Small samples were largely due to the fact that genotyping was
very expensive for the first decade of the twenty-first century. A tech-
nological advance that assessed hundreds of thousands of DNA differ-
ences (single-nucleotide polymorphisms, SNPs) enabled an atheoretical
approach to identify associations across the genome, called genome-
wide association (GWA). The substantial decrease in cost of GWA
analyses during the past decade coincided with larger samples be-
coming available, and large-scale biobank studies were launched.

5.1. Genome-wide association studies of cognitive ability and academic
performance

Recently, GWA studies have begun to identify SNPs associated with
individual differences in cognitive ability and educational attainment
(Davies et al., 2018; Lee et al., 2018; Okbay et al., 2016; Rietveld et al.,
2013; Savage et al., 2018a; Sniekers et al., 2017). The first major
finding that has emerged from GWA studies of all complex traits is that
no associations of large effect size have been discovered – the largest
effects are much smaller than anyone anticipated. This means that
heritability is due to many DNA differences, that is, virtually all phe-
notypes are highly polygenic. This finding is so common that it has been
described as a “Law” of behavioural genetics: ‘ … typical human beha-
vioural trait is associated with very many genetic variants, each of which
accounts for a very small percentage of the behavioural variability’ (Chabris
et al., 2015).

GWA studies have investigated the specific genetic variants that are
associated with cognitive performance (Lee et al., 2018; Sniekers et al.,
2017) and educational attainment (Lee et al., 2018; Okbay et al., 2016;
Rietveld et al., 2013). As the sample sizes of these investigations in-
crease, with the latest GWA of educational attainment (EA3) in-
cluding>1.1 million participants, and that of cognitive performance
(IQ3) including> 250,000 participants (Lee et al., 2018; Savage et al.,
2018a), increasingly more insight into the molecular genetic archi-
tecture of cognitive ability and academic performance has started to
emerge. These continuously increasing sample sizes have allowed for a
great deal of statistical power, and the ability to uncover more and
more SNPs –each of miniscule effect size– that are associated with

educational attainment and cognitive performance. In fact, the latest
GWA analyses identified 1271 approximately independent loci asso-
ciated with educational attainment EA3, and 225 loci associated with
cognitive performance IQ3 (Lee et al., 2018). The IQ3 results stemming
from a complementary effort in partly overlapping cohorts, with a total
sample size of 269,867 were highly consistent, identifying 205 mostly
overlapping loci (Savage et al., 2018a).

The success of a GWA study for a given trait depends on multiple
factors including the genetic architecture of the trait, the sample size,
and trait heterogeneity; the latter is directly related not only to the
biology of the trait, but also to how accurately we can measure that trait
in the population (Visscher et al., 2017). The GWA studies of educa-
tional attainment and cognitive performance are the most powerful
gene-discovery efforts in the behavioural sciences to date (Plomin and
von Stumm, 2018). In addition, these powerful GWA studies point,
more generally, to the reliability of the methodology. GWA studies have
been met with criticism both regarding their purpose and their dis-
coveries (Visscher et al., 2012, 2017). However, two recent in-
dependent efforts to uncover the genetic variants associated with cog-
nitive performance in partly overlapping samples (Savage et al., 2018a;
Lee et al., 2018) have resulted in highly consistent findings. Similarly,
results are highly consistent across iterations of the GWA studies of
educational attainment (i.e. EA1, EA2 and EA3), and genetic correla-
tions are substantial, although not perfect, between different cohorts
(Lee et al., 2018). As noted by the authors: ‘imperfect genetic correlation
across cohorts will be the norm for phenotypes, such as educational at-
tainment, that are environmentally contingent.’ (Lee et al., 2018, p. 6).
Therefore, the accomplishments of GWA studies of cognitive perfor-
mance and educational attainment extend beyond their successful dis-
coveries of genetic variants, to highlight the robustness of GWA dis-
coveries.

5.2. Pleiotropic effects between cognition and education leveraging GWA
discoveries

Methodological advances have made it possible to calculate genetic
correlations between traits based on GWA discoveries. The most widely
used method is cross-trait linkage disequilibrium (LD) score regression,
which estimates genetic correlations based on GWA summary statistics
unbiased by sample overlap (Bulik-Sullivan et al., 2015). Applying LD
score regression, it is therefore possible to calculate genetic correlations
between educational attainment and cognitive performance entirely
from DNA, free from the majority of the assumptions that apply to fa-
mily-based designs such as the twin method. A substantial genetic
correlation was found between educational attainment and g (rg = .66;
Lee et al., 2018), which is in line with estimates of genetic correlations
obtained from twin studies and Genome-wide Complex Trait Analysis
(GCTA; Rimfeld et al., 2015). Applying LD score regression, strong
correlations have also been observed between the genetics of cognitive
performance and the genetics of two additional educationally-relevant
traits: highest level of mathematics class completed (rg = .64) and self-
rated mathematics ability (rg = .60); in addition, these two traits shared
strong genetic correlations with educational attainment (rg = .80 and
.51, respectively; Lee et al., 2018). Overall, these results are in line with
estimates of genetic associations between cognitive and academic per-
formance that emerged from decades of twin research and DNA-based
methods like GCTA (Yang et al., 2011).

Another method estimates associations directly between SNPs
emerging from GWA discovery and phenotypic variation in in-
dependent samples. As noted, each significant SNP association accounts
for only a very small proportion of the heritability of complex traits
(Chabris et al., 2015; Manolio et al., 2009). However, because genetic
variants combine additively to influence trait development, the genetic
effects on a trait can be captured by adding up individual SNP effects
across the genome (Plomin and von Stumm, 2018). This can be
achieved through creating a genome wide polygenic score (GPS). A GPS
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can be calculated for every individual as the sum of trait-associated
alleles, weighted by the GWA study effect size for a particular trait
(Dudbridge, 2013). These summary genetic scores are continuously
distributed in the population; that is, some individuals carry different
numbers of SNP variants associated with the trait. Consequently, a GPS
constructed by aggregating across SNPs associated with variation in
cognitive ability or educational attainment can be considered a measure
of individual-specific genetic propensity towards these traits (Plomin
and von Stumm, 2018). Correlations between GPS for different traits
are analogous to bivariate heritability in twin studies, mentioned ear-
lier, in that they index the proportion of phenotypic variance of the
traits that covaries genetically.

Importantly, the GPS constructed from the GWA studies of cognitive
ability and educational attainment are not limited to predicting their
target traits (Davies et al., 2018; Savage et al., 2018a; Selzam et al.,
2017). For example, a GPS constructed from an earlier GWA analysis of
educational attainment including>290,000 participants (EA2; Okbay
et al., 2016) was found to predict variation in teacher-rated academic
achievement at every stage of compulsory education (Selzam et al.,
2017). Interestingly, the effect size of this DNA-based prediction in-
creased with age, with the EA2 GPS accounting for nearly 3 % of the
variance in achievement at age 7,> 4.5 % at age 12 and>9 % of the
phenotypic variance in standardized educational exam scores at age 16.
The EA2 GPS also accounted for individual differences in g (approxi-
mately 3.5 %; Selzam et al., 2017). Highly consistent predictions are
observed when considering teacher-rated and test-based measures of
academic achievement over development using the same EA2 GPS
(Rimfeld et al., 2018b). The predictive power of the GPS generated from
the EA3 GWA study is even greater. In two independent samples of
American adults, the EA3 GPS was found to predict 12.7 % and 10.6 %
of the phenotypic variance in educational attainment, respectively (Lee
at el., 2018). Moreover, the EA3 GPS based on educational attainment
in adults predicts up to15 % of the variance in tested educational
achievement at age 16 (Allegrini et al., 2019), which is the most
powerful GPS prediction reported to date in the behavioural sciences
(Plomin, 2018).

5.3. Multivariate approaches to genome-wide association studies

Multivariate GWA approaches have been developed to analyse GWA
summary statistics from two or more traits in conjunction and to in-
crease power to detect SNP associations by leveraging the genetic re-
lationships among traits. One of the main examples of such multivariate
methods is the Multi-Trait Analysis of GWA (MTAG; Turley et al.,
2018). MTAG jointly analyses GWA for multiple traits (two or more),
leveraging their genetic correlation to enhance statistical power thus
allowing for more accurate estimation of SNP effects for each trait in-
cluded in the analysis. This method, grounded in cross-trait LD score
regression, can be applied to GWA summary statistics directly, without
requiring individual-level genetic data (Turley et al., 2018). The ap-
plication of this multivariate method has resulted in increased power
for both GWA discoveries (e.g. Hill et al., 2018) and their related GPS
predictions (e.g. Lee et al., 2018; Allegrini et al., 2019).

A recent study has applied MTAG to combine the IQ2 (Sniekers
et al., 2017) and EA2 GWA in order to create a more powerful GWA
analysis of cognitive ability. This multivariate approach led to a sub-
stantial increase in sample size and power which in turn resulted in the
identification of 187 independent loci (Hill et al., 2018) relevant to
cognitive ability. This constituted a substantial boost in power as
compared to the individual EA2 and IQ2 GWA analyses, which identi-
fied 74 and 18 genome-wide significant independent loci, respectively.
GPS calculated after applying MTAG to GWA summary statistics has
also resulted in increased predictive ability. The multivariate GPS
constructed from aggregating the GWA summary statistics of four
cognitive and educationally-relevant traits (EA3, IQ3, highest level of
mathematics class completed and self-rated mathematics ability) was

found to increase the prediction of educational attainment and cogni-
tive ability by between 2.7 % and 6.9 % of the variance, depending on
the sample and phenotype (Lee et al., 2018).

A further multivariate GWA approach is genomic structural equa-
tion modeling (Genomic SEM; Grotzinger et al., 2019). Based on the
principles of SEM widely used in twin analyses and integrated with
cross-trait LD score regression (Bulik-Sullivan et al., 2015), Genomic
SEM jointly analyses GWA summary statistics for multiple traits to test
hypotheses about the structure of the genetic covariance between traits.
By creating latent factors from GWA summary statistics, this approach
can also be used to boost power for GWA discovery and polygenic
prediction (Grotzinger et al., 2019). Examining the predictive power of
GPS across multiple multivariate methods, a recent study found that
aggregating across educationally-relevant GWA summary statistics
(EA3, IQ3, income, ‘age when education was completed’, and ‘time
spent using the computer’) using Genomic SEM increased prediction of
academic achievement and cognitive ability (Allegrini et al., 2019).
While a GPS constructed from the single EA3 GWA summary statistics
accounted for a maximum of 14.8 % of the variance in academic
achievement and the GPS constructed from IQ3 accounted for a max-
imum of 6.7 % in cognitive ability, aggregating across GWA summary
statistics accounted for 16 % of the variance in academic achievement
and 11 % of the variance in g at age 16. Similar boosts to predictive
power were obtained when the multivariate GPS was constructed using
MTAG (Allegrini et al., 2019).

A different approach that has been applied with the aim of in-
creasing GPS prediction is the multi-GPS technique (Krapohl et al.,
2017). Different from the two methods described above, this approach
works at the level of the GPS scores of individuals rather than at the
level GWA summary statistics. In this framework, elastic net regular-
ization (a regularized regression method) is applied to a number of GPS
to predict trait variation. While multiple linear regressions subject to
problems of multicollinearity and overfitting when a large number of
correlated predictors are included in the model, elastic net regression
overcomes these problems by shrinking (i.e. penalizing) parameter es-
timates and, at the same time, performing model selection by dropping
sets of non-informative predictors (Zou and Hastie, 2005). As a con-
sequence, the multi-GPS approach allows for the inclusion of a very
large number of variables in the regression model. Applying this multi-
GPS approach has resulted in increases in the GPS predictive power of
academic achievement (+1.1 %) as compared to models including a
single GPS, and similarly larger effect sizes were observed for other
traits such socioeconomic status and body-mass index (Krapohl et al.,
2017).

Therefore, in line with the evidence emerging from decades of twin
studies, findings from research applying the newest DNA-based
methods consistently report substantial estimates of genetic influences
on cognitive educational traits (Fig. 2), as well as strong genetic cor-
relations between these two broad traits.

5.4. Molecular genetic investigations into transactional processes of gene-
environment interplay

But what are the implications of high heritability and strong genetic
covariance between traits? What does it mean for traits to be heritable
and for their covariance be explained by genetic factors?

Heritability is maximized when people are free to choose their own
experiences, partly based on their genetic propensities. As such, herit-
ability can be considered an index of equal opportunities. In line with
transactional models of cognitive development, the heritability of
cognitive ability (Tucker-Drob et al., 2013) and, to a lesser extent, that
of academic performance (de Zeeuw et al., 2015) has been found to
increase with age. This observed increase in the heritability of g over
development has been replicated using DNA-based methods
(Trzaskowski et al., 2014). As children grow older, they are increasingly
able to select their own experiences. Their selection of experiences is
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not random, instead they will be exposed to and seek out experiences
that correlate with their genetic propensity, resulting in increased
heritability estimates. Clever designs applying DNA-based methods
have started providing concrete evidence for the effects of GE correla-
tion on heritability estimates and GPS predictions.

One such design leverages genetic trios of mother, father, and off-
spring to partition the variance in the parental genotype into two parts:
the genetic variants that are transmitted to the offspring and the genetic
variants that are not transmitted (Bates et al., 2018; Kong et al., 2018).
This design examines the effects of ‘genetic nurture’, or the ‘nature of
nurture’ (Plomin and Bergeman, 1991), on variation in a trait. Genetic
nurture tests whether non-inherited genetic variants contribute to
variation in children’s phenotypes through their impact on parents and
siblings, thus providing evidence of genetic effects acting through en-
vironmental pathways (Koellinger and Harden, 2018). Applying this
method, a recent study found that the GPS constructed for the non-
transmitted genetic variants predicted variation in educational attain-
ment in offspring, with an effect size of approximately one third that of
the GPS calculated for the transmitted genetic variants (Kong et al.,
2018). This provides support for genetic effects influencing offspring’s
characteristics through their correlations with the environment (passive
GE correlation). A further study using the same logic found that, in a
different sample, the parental educational attainment GPS correlated
with the socio-economic environment, which in turn was related to
offspring’s educational attainment (Bates et al., 2018). The genetic
nurture design is conceptually similar to an adoption design, as it can
separate the effects of genotype and family rearing environment, al-
though only in terms of genetic effects on parents’ traits that are cor-
related with offspring traits independent of the offspring’s genetics. As

previously discussed, twin studies estimate shared environmental fac-
tors only indirectly, as a residual component of covariance not ex-
plained by genetic transmission.

Another ingenious and conceptually related design allows us to
disentangle the effects of genetic and environmental factors on GPS
without requiring intergenerational data. This method compares the
GPS prediction in adoptees and non-adoptees, based on the assumption
that adoptees, by virtue of growing up with their genetically unrelated
adoptive parents, do not share passive rGE with their parents, even
though adoptive parents respond to their adopted children’s genotypes
(evocative rGE) and adopted children actively engage with their
adoptive parents to foster their genetic propensities (active rGE)
(Cheesman et al., 2019). Applying this design in the UK Biobank
sample, the study found that GPS were twice as predictive of educa-
tional attainment in non-adoptees as compared to adoptees. This is yet
another line of evidence for passive rGE correlation processes operating
on educational success. (Cheesman et al., 2019).

A further conceptually related design leverages differences in GPS
predictions between siblings growing up in the same family to separate
between- and within-family pathways that contribute to predictive
power of GPS (Selzam et al., 2019). Between-family effects can include
the effects of assortative mating and population stratification, which
can be viewed as inflating GPS predictions. Examining GPS effects
within families eliminates these between-family effects. Siblings, like
dizygotic twins, share on average 50% of the DNA variants that differ
between individuals because they randomly inherit one of each parents’
two alleles per locus. Because they grow up in the same family, a cor-
relation between sibling GPS differences and their differences in ob-
served trait variation can be interpreted as a causal effect of the

Fig. 2. A few key findings on the GPS prediction of academic and cognitive performance. Panel a. illustrates how the predictive power of GPS constructed from
GWAS of educational attainment (EA) and cognitive performance (IQ) increases as a function of larger sample sizes: EA1 (∼125,000; Rietveld et al., 2013), EA2
(∼290,000; Okbay et al., 2016), EA3 (∼1,100,000; Lee et al., 2018), IQ1 (∼54,000; Davies et al., 2015), IQ2 (78,000; Sniekers et al., 2017), IQ3 (∼260,000; Lee at
al., 2018). Panel b. illustrates how the GPS prediction for both academic and cognitive performance increases from early to late adolescence (Allegrini et al., 2019).
Interestingly, the GPS constructed from the GWA study of educational attainment predicts over 14 % of the variance in academic achievement at age 16, measured as
standardized exam scores (Allegrini et al., 2019), compared to 11.4 % of the variance in educational attainment (years of education) across two adult samples (Lee
et al., 2018). Panel c. shows the increase in the predictive power of GPS when adopting multivariate methods (Allegrini et al., 2019). The multivariate GPS
considered in panel c. aggregated discoveries across five GWAS of traits relevant to cognition and education (EA3, IQ3, income, age when education was completed
and use of computer; Allegrini et al., 2019). Different multivariate methods led to similar increases in the predictive power of GPSs.
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genotype on the observed phenotype that is free from the confounding
between-family effects of assortative mating and population stratifica-
tion. Applying this method to investigate cognitive ability and educa-
tional achievement, a study found that GPS predictions for educational
achievement and g were much greater at the between-family level than
at the within-family level (∼60%) (Selzam et al., 2019). This finding
shows that some of the predictive power of GPS for these traits is
mediated by between-family factors. Interestingly, the majority of this
difference in GPS prediction observed between and within families was
found to be accounted for by family socio-economic status (SES). If SES
were viewed as a completely environmental measure, these results
would suggest passive GE correlation operating between families.
However, SES is heritable – indeed, on of the major components of SES
is educational attainment, which is the target for the EA3 GPS. Thus,
the finding that SES accounts for the increased between-family GPS
prediction might also index genetic effects because controlling for SES
will affect between-family but not within-family GPS prediction.

Heritability is not only maximized when individuals are exposed to,
or free to choose, experiences that correlate with their genetic pro-
pensities at the personal level, but also major changes at the societal
level may result in amplified heritability. In line with this proposition,
one study found that the heritability of educational attainment in
Estonia post-Soviet era, a time characterized by an increase in equal
opportunities and meritocracy, was substantially higher than the her-
itability during the Soviet era (Rimfeld et al., 2018a,b). Therefore, ge-
netic effects were found to vary as a function of social policies and of
major shifts in societies, which is consistent with GE interaction pro-
cesses. Providing additional support, the EA2 GPS was approximately
twice as predictive of educational attainment in the post-Soviet era
(Rimfeld et al., 2018a,b). These results are analogous to those from a
meta-analysis testing GE interaction effects on the heritability of g in
twin studies. As previously discussed, evidence for GE interaction in
which heritability was higher for children in higher SES homes. This
effect was found only in the United States, which could be due greater
inequalities in the US for educational quality, access to healthcare,
welfare and social mobility (Tucker-Drob and Bates, 2016).

5.5. Key limitations of DNA-based methods

Several limitations should be considered when evaluating the
findings stemming from molecular genetic research on cognitive and
educational traits. The most striking limitation to date is the fact that
DNA-based results are mostly based on samples of European ancestry.
This limits the extension of genetic findings to other populations
(Martin et al., 2019; Popejoy and Fullerton, 2016). Although GWA
studies in populations of non-European ancestry are beginning to
emerge (Emmanuel and von Schantz, 2018) and genotyping companies
are providing increasingly powerful tools for genotyping on a global
scale, this remains to date a major limitation of DNA-based methods.

A second major limitation of DNA-based methods is that the genetic
variants that have emerged from the most recent and powerful GWAS,
explain only a small portion of the heritability of traits (narrow sense or
chip heritability) as compared to twin heritability estimates (broad
sense heritability). This is particularly the case for psychological and
behavioural traits for which only between one to two-thirds of the twin
heritability is accounted for by common genetic variants (Visscher
et al., 2012). This gap in the heritability estimated from classical twin
design and DNA-based methods is known as missing heritability (Maher,
2008). .Several factors have been proposed to account for this missing
heritability gap, including the possibility that twin-based heritability
estimates might be inflated (Young, 2019). Two other factors could
explain why DNA-based methods underestimate heritability. One pos-
sibility is the current inability of GWAS to tag interactive effects be-
tween genes (epistatic effects) and between genes and environments
(GE interaction) may result in the observed missing heritability gap
(Aschard et al., 2012). However, as previously discussed, solid evidence

of interaction effects is currently lacking in the behavioural and psy-
chological literature and may include processes that are highly culture-
specific. The second possibility is rare variants that are not tagged by
SNP arrays commonly used in GWA. This hypothesis has recently been
tested using whole genome sequencing data in a sample of 22,000 for
two anthropometric traits: height and body-mass index (Wainschtein
et al., 2019). The study found that including rare variants, particularly
those in low LD with tagged SNPs, recovered the majority of the her-
itability derived from twin studies (Wainschtein et al., 2019). However,
whether similar processes apply to complex psychological and beha-
vioural traits, including cognitive ability and educational achievement
remains speculative.

Several other, more technical, limitations apply to GWA and the
DNA-based methods that derive from GWA discoveries. It is beyond the
scope of the current review to discuss all these at length, but an in-
depth discussion of the benefits and limitations of the GWA design is
available (Tam et al., 2019). In light of the limitations that currently
apply to both DNA-based methods and the limitations of the classical
twin design, applying multiple methodologies in conjunction would
result in increasingly robust findings (Lawlor et al., 2016). Convergence
between twin and DNA-based findings is beginning to emerge. For ex-
ample, DNA-based findings provide some support for two develop-
mental findings for g from twin research. Twin research finds strong
genetic stability for g despite increasing heritability. A DNA-based study
showed similar results, with a genetic correlation of .73 from age 7 to
age 12 and heritability increasing from .26 at age 7 to .45 at age 12
(Trzaskowski et al., 2014). Similarly, DNA-based research has provided
support for the finding of substantial genetic correlation between g and
academic performance, with DNA-based genetic correlations between g
and language, reading, and mathematics found to exceed .70
(Trzaskowski et al., 2013).

Triangulating across multiple genetically informative methodolo-
gies is also likely to provide increasingly actionable knowledge about
the biological and environmental processes that shape the development
of cognitive ability and educational achievement. Novel methods have
been developed to combine classical behavioural genetic methodologies
with DNA-based methods. A recent example is a new technique that
allows for the integration of GPS in classical twin models to estimate the
effects of GE correlation (Dolan et al., 2019).

Regardless of the limitations that characterize each method and of
the desirable push towards triangulating across multiple methodolo-
gies, genetic research has provided compelling evidence that has re-
sulted in greatly advancing our knowledge and understanding of the
association between cognitive ability and learning. Through rigorous
genetic research that has applied both twin and DNA methods scientists
have reached a much greater understanding of the genetic and en-
vironmental processes that shape cognitive and educational traits
during development, from their stability to their molecular basis.
Among the most noteworthy findings emerging from behavioural ge-
netic research are the notions that cognitive ability and academic per-
formance share a strong association throughout the lifespan. This in-
creases sharply over childhood, and from mid-childhood onwards is
mostly accounted for by genetic influences. Nevertheless, the pheno-
typic and the genetic correlation between cognitive ability and aca-
demic performance are far from unity. Although it may be intuitive to
speculate that the strong stability and heritability of academic perfor-
mance is driven by g, genetic research has shown that the stability and
genetic effects on academic performance remain substantial even after
accounting for g. This suggests that several other educationally relevant
characteristics contribute to the genetic variation in academic perfor-
mance. It is fundamental to acknowledge these ‘noncognitive’ processes
and to position them within a genetically oriented model of cognitive
ability and learning. Consequently, the section that follows provides a
brief overview of genetically informative research that has examined
variation in such educationally relevant noncognitive characteristics.
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6. The genetics of education extends beyond academic
performance

Although the notion that skills beyond cognitive ability are im-
portant in promoting learning has been embraced by cognitive scien-
tists for over a century (e.g. Binet and Simon, 1916; Wechsler, 1943),
the interest of behavioural genetics in noncognitive skills has emerged
only recently. In fact, as compared to cognitive ability and academic
performance, a significantly smaller body of genetically informative
research has examined educationally relevant noncognitive character-
istics. A first limitation that has hindered progress in the systematic
investigation of noncognitive skills is their negative definition: they are
not defined by what they are, rather by what they are not: they are not
cognitive skills. A recent surge in interest in the role of noncognitive
characteristics across the social sciences (Heckman et al., 2006; West
et al., 2016), has led to efforts in refining noncognitive traits. When
considering educationally-relevant noncognitive skills, researchers
have identified five key domains that contribute to educational success:
personality traits, motivational factors, self-regulation, student’s ap-
proaches to learning, and psychosocial influences (Richardson et al.,
2012). These domains are conceptually overlapping, yet distinguish-
able, and it is therefore fundamental to consider both their specific and
collective role in promoting educational success.

All these different noncognitive processes have been found to relate
to academic performance to varying degrees. While g remains the best
predictor of academic performance, accounting for between one quarter
and one third of its variance, research has shown that noncognitive
skills predict academic performance beyond g. In a sample of 16-year-
olds from the United Kingdom, self-efficacy and personality, in addition
to other constructs such as wellbeing, behavioural problems, health,
and perceived home and school environments, collectively accounted
for a comparable proportion of variance in academic performance as g
(Krapohl et al., 2014). In addition, measures of personality, self-reg-
ulation and motivation, are related to variation in academic perfor-
mance beyond measures of cognitive ability (e.g. Tangney et al., 2004;
Muenks et al., 2017; Tangney et al., 2004; Garon-Carrier et al., 2016;
Guay et al., 2010; Tucker-Drob and Harden, 2012, 2014; Chamorro-
Premuzic et al., 2010; Tucker-Drob and Briley, 2012).

6.1. Twin studies of the association between noncognitive processes, general
cognitive ability and academic performance

Behavioural genetic studies have examined the genetic and en-
vironmental underpinnings of personality traits, finding moderate ge-
netic influences across personality characteristics, little to no con-
tribution of shared environment, and an increasingly important role of
nonshared environmental influences on personality traits over the
lifespan (see Briley and Tucker-Drob, 2017 for comprehensive reviews
of the available evidence).

Less genetically informative research has been devoted to in-
vestigating the genetic and environmental underpinnings of motiva-
tional factors and students’ approaches to learning. The available evi-
dence suggest that motivational processes, such as self-efficacy and
interest, are moderately heritable and that nonshared environmental
factors contribute substantially to individual differences in motivation
during childhood and adolescence across several countries (Kovas et al.,
2015; Tucker-Drob et al., 2016). Genetic and environmental effects on
students’ approaches to learning, measured as goal-orientation, have
been found to shift with age, with environmental influences being the
primary source of variation during childhood and a gradual increase in
genetic influence during adolescence and adulthood (Zheng et al.,
2019). Combining evidence from phenotypic and genetic research
points to how noncognitive skills represent a very broad, eclectic and
complex phenotype.

In an attempt to dissect the complexity of the noncognitive phe-
notype, genetically informative studies have examined associations

between a few ‘key’ educationally relevant noncognitive variables and
academic performance, most notably, grit (Duckworth et al., 2007) and
motivation. Grit, a psychological construct that describes perseverance
and passion to achieve long-term goals (Duckworth et al., 2007), is
closely related to the personality dimensions of conscientiousness
(Rimfeld et al., 2016b) and self-control (Duckworth and Gross, 2014),
sharing strong phenotypic and genetic correlations with them
(Malanchini et al., 2019). In a sample of 16-year-olds, the modest
correlation between grit and academic achievement was found to be
largely due to shared genetic variance, and to a lower extent to non-
shared environmental variance (Rimfeld et al., 2016a,b). These genetic
and environmental effects, however, could almost entirely be accounted
for by conscientiousness, questioning the role of grit as a specific key
component of academic success (Credé et al., 2017; Rimfeld et al.,
2016a,b).

The moderate links between individual differences in academic
achievement and academic motivation (Gottschling et al., 2012) and
other more targeted motivational constructs, such as self-perceived
ability (Greven et al., 2009), were also found to correlate primarily for
genetic reasons across two samples of primary and secondary school
students cross-culturally (Gottschling et al., 2012; Greven et al., 2009;
Luo et al., 2010). Nonshared environmental factors provided a weaker
contribution to the association, while shared environmental factors
were not implicated in the association between motivation and aca-
demic achievement. Although noncognitive traits vary substantially in
their aetiology, genetic factors seem to constitute the major systematic
source of covariation between specific educationally relevant non-
cognitive characteristics and academic performance.

Reciprocal models of the association between noncognitive factors
and academic performance propose that their association is subject to a
process of mutual influence that results in their relation being main-
tained over development (Morgan and Fuchs, 2007). Longitudinal
studies have supported these reciprocal models, finding longitudinal
developmental links between noncognitive characteristics and
achievement (e.g. Chamorro-Premuzic et al., 2010; Marsh and Martin,
2011). A handful of studies have examined the origins of such long-
itudinal links applying genetically informative designs. For example,
the longitudinal relations between self-perceived ability and academic
performance between the ages of 9 and 12 was found to be character-
ized by reciprocal links, mediated largely through genetic pathways
(Luo et al., 2010).

Two further studies in the same sample have explored associations
between multiple aspects of motivated behaviour (self-perceived ability
and interest) and teacher-rated achievement in the context of mathe-
matics learning (Luo et al., 2011) and reading ability (Malanchini et al.,
2017). In the context of mathematics achievement, one study found
that while the link from earlier achievement (age 9) to subsequent
motivation (age 12) was mostly attributable to genetic factors, the link
from early motivation to subsequent achievement was mediated
through both genetic and child-specific (i.e. nonshared) environmental
pathways (Luo et al., 2011). Results of the investigation into the asso-
ciation between motivation for reading and reading ability yielded
highly consistent results. Applying for the first time a genetically sen-
sitive full cross-lagged panel analysis (ACE cross-lagged; Malanchini
et al., 2017), the study found that, while the path from early reading to
later variation in motivation was almost entirely genetic in origin, the
path from early motivation to subsequent reading comprehension was
explained by both genetic and nonshared environmental factors
(Malanchini et al., 2017). Interestingly, both studies found that long-
itudinal associations remained significant and similar in their aetiology
even when statistically controlling for g (Malanchini et al., 2017; Luo
et al., 2011).

While some genetically informative research has examined the ge-
netic and environmental underpinnings of the association between
targeted noncognitive characteristics and academic performance, only a
few investigations have examined the collective contribution of
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multiple aspects of the noncognitive umbrella to variation in academic
achievement. In one of the most comprehensive investigations of edu-
cationally-relevant noncognitive skills to date, Tucker-Drob et al.
(2016) found that two second-order latent factors that captured cov-
ariation among multiple measures of childhood character (motivation,
attitudes and personality processes) were moderately heritable and
shared genetic links with academic achievement, even after controlling
for fluid intelligence (Tucker-Drob et al., 2016).

An even more comprehensive investigation conducted in a partly
overlapping sample of twins examined how multiple aspects of self-
regulation, personality and motivation contributed, individually and
collectively, to variation in reading and mathematics ability
(Malanchini et al., 2019). The investigation found that beyond cogni-
tive ability, self-regulation contributed substantially to variation in
reading and mathematics, and that these pathways were largely genetic
in origin. In addition, while aspects of personality, motivation and at-
titudes related to conscientiousness (e.g. effortful persistence, self-dis-
cipline and diligence) did not account for further variation in academic
achievement, aspects of personality, motivation and attitudes related to
openness (e.g. curiosity, intellectual interest and self-efficacy) further
contributed to academic performance, particularly in reading. These
links between facets of openness and achievement were largely medi-
ated by genetic effects. Remarkably, when examined in conjunction,
measures of cognitive abilities, self-regulation, personality, motivation
and attitudes towards learning accounted for the entirety of the genetic
variance in reading and mathematics (Malanchini et al., 2019). No
study to date has tested how these multiple noncognitive, cognitive and
educational processes interact and influence each other over develop-
ment applying formal longitudinal methods. Overall results are in line
with the description of intellectual curiosity as the ‘third pillar of aca-
demic performance’ beyond intelligence and conscientiousness (von
Stumm et al., 2011).

6.2. Molecular genetic research into educationally relevant noncognitive
skills

Even fewer studies have examined the genetic architecture of non-
cognitive skills and of their association with academic performance and
cognitive ability using DNA-based methods. One of the earlier studies to
link variation in the GPS constructed from the first GWA study of
educational attainment (EA1; Rietveld et al., 2013) to noncognitive
characteristics found that children with higher educational attainment
GPS tended to show a higher level of self-control (Belsky et al., 2016).
In addition, the same study found that self-control and interpersonal
skills mediated the prediction from the educational attainment GPS to
positive life outcomes in adulthood including higher educational and
professional success (Belsky et al., 2016). A further study examined
how the educational attainment GPS could predict variation in the big
five factors of personality (Costa and McCrae, 1992) and a broad mo-
tivation composite. The study found that the EA3 GPS was related to
three aspects of personality (conscientiousness, agreeableness and
openness), accounting for between 0.6 % and 2 % of their variance, and
to academic motivation, accounting for nearly 3 % of its variance.
Furthermore, the study examined whether the EA3 GPS could account
for the association between each noncognitive skill and academic
achievement at age 16, finding that it explained between 8 % and 16 %
of the correlations between them (Smith-Woolley et al., 2019).

While these two studies applied GWA discoveries in the field of
educational attainment to the investigation of noncognitive skills, one
recent study has looked into the heritability and covariation between
multiple noncognitive skills using DNA-based methods. Estimating
univariate heritability and pairwise genetic correlations in large sam-
ples of unrelated individuals using GCTA (Yang et al., 2011), the in-
vestigation found that across multiple measures of noncognitive skills
(including personality, self-regulation, and motivation), estimates of
heritability and genetic correlations between measures were weak

(Morris et al., 2018). In addition, all noncognitive measures shared
weak genetic associations with educational or professional success.
These results, inconsistent with the moderate heritability estimates and
correlations emerging from twin research, could point to several
weaknesses and limitations that currently exist in the quest to identify
the genetic architecture of noncognitive skills.

The first challenge in pushing the identification of the genetic ar-
chitecture of noncognitive skills forward is measuring them reliably, an
issue that is rooted in their broad all-encompassing definition, as well as
in the fact that measurement relies nearly exclusively on self-reports.
The fact the noncognitive phenotype is an conglomerate of many dif-
ferent skills and characteristics that correlate to varying degrees poses a
major challenge: the availability of a comprehensive enough battery of
tests that would enable extraction of reliable components (e.g. Tucker-
Drob et al., 2016). Reliable composite measures that reflect common-
alities across noncognitive skills would likely result in advancing our
understanding of the molecular genetic architecture of noncognitive
skills. However, administering long batteries of noncognitive tests to
the very large samples needed for GWA discovery is likely to prove
challenging. One potential way forward could be creating short, easy to
administer, online batteries that specifically target characteristics that
are common across noncognitive skills in order to quickly extract a few
reliable measures. A second possibility would be to leverage recent
advances in multivariate GWA methods, for example Genomic SEM
(Grotzinger et al., 2019), to create latent GWA analyses of noncognitive
skills (Demange et al., 2020).

The difficulty in reliably getting to the molecular basis of non-
cognitive skills points to a broader issue: the importance of phenotypes
in genetic discoveries. Although this fundamental issue is beyond the
scope of the current review, measurement heterogeneity is likely to
have a major impact in GWA discoveries, particularly when working
with complex behaviours and conditions such as human motivation or
psychopathologies (Chabris et al., 2013). Methods such as Genomic
SEM that can parse generality from specificity are likely to contribute
importantly to the quest to dissect the heterogeneity of phenotypes.
Alternative toolkits are being developed, for example, to dissect genetic
heterogeneity in major depression (McIntosh et al., 2019).

7. Towards a comprehensive, evidence-based model of learning:
cognitive ability, academic performance and noncognitive skills in
the context of genotypes and environments

Although noncognitive skills have been the subject of much less
behavioural genetic research, recent studies have begun to clarify how
genetic and environmental factors contribute to individual differences
in this heterogeneous domain and, importantly, the genetic and en-
vironmental underpinnings for its association with academic perfor-
mance and cognitive ability. Indeed, considering both cognitive and
noncognitive skills and their biological and environmental under-
pinnings is fundamental if the goal is to move towards a comprehen-
sive, evidence-based model of education.

Extant studies point to the great benefits that come from considering
both cognitive and noncognitive skills in conjunction in order to predict
life outcomes such as educational and professional success, morbidity
and mortality. One study conducted in a large longitudinal sample has
shown that the strength of the prediction of adult outcomes from
childhood risk increased significantly when cognitive and noncognitive
characteristics (childhood IQ and childhood self-control) were con-
sidered jointly rather than in isolation (Caspi et al., 2016). In line with
Pareto’s principle, the study showed that around 20 % of the population
was found to account for around 80 % of adult economically burden-
some outcomes, from tobacco smoking to criminal convictions and
hospitalizations. Childhood cognitive and noncognitive skills, together
with growing up in socioeconomic disadvantage, predicted these eco-
nomically burdensome outcomes with great accuracy (Area Under the
Curve of .87; Caspi et al., 2016). Such evidence not only highlights the
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importance of considering cognitive and noncognitive skills in con-
junction for both prediction and intervention purposes, but also of
considering environmental risk factors together with genetic predis-
positions.

In addition to being partly rooted in genetic variation, the associa-
tion between g, educational performance and life outcomes is also
shaped by the socioecological context (Engelhardt et al., 2018) and its
related behaviours, also described in the literature as the behavioural
constellation of deprivation (Pepper and Nettle, 2017). It has been
proposed that the reduced wealth and influence that are generally as-
sociated with socioeconomic deprivation are likely to result in an in-
creased inability to affect one’s future outcomes, from educational at-
tainment to illness. One of the psychological processes proposed to be
key for these observed links between deprivation and unfavourable life
outcomes is a lack of experienced and perceived personal control, since
‘ Limited personal control may include a restricted ability to ensure that
returns on investments made in the present, for payoffs in the future, will be
received’ (Pepper and Nettle, 2017, p.3). As a consequence, motivational
processes based on different expectations of the future may contribute
to, or exacerbate, the discrepancy in life outcomes observed between
individuals belonging to different socioeconomic brackets.

As previously discussed, social processes such as those included in
the behavioural constellation of deprivation (Pepper and Nettle, 2017)
and genetic processes likely act in concert to give rise to variation in
traits that are ultimately linked to differential life outcomes. Transac-
tional models, rooted in GE correlation, provide a suitable framework
for pushing our conceptualization of education towards embracing the
important discoveries that stem from behavioural genetic research. As
discussed earlier, transactional models propose that genotype-en-
vironment correlation promotes differences in environmental experi-
ences, which in turn impact cognitive development and academic
achievement (Briley & Tucker-Drob, 2013). Some of the genetically-
influenced environmental experiences that have been associated with
being exposed to, selecting, and evoking educationally relevant en-
vironments are noncognitive skills such as attitudes and motivation
(Tucker-Drob and Harden, 2012). In line with this framework, students
would select, evoke and experience learning environments, partly de-
pending on their differences in cognitive and noncognitive character-
istics, which are themselves partly genetically influenced.

Six main criteria have been proposed as necessary in order to find
empirical support for the transactional model of the association be-
tween noncognitive traits and academic achievement. First, a correla-
tion between the noncognitive trait and achievement is necessary, al-
though not sufficient. Second, their correlation should be significant
beyond their association with general cognitive ability. Third, the
model requires noncognitive factors to be moderately heritable. Fourth,
there should be a degree of genetic correlation between the non-
cognitive trait and academic achievement. Fifth, the direction of cau-
sation, evaluated through longitudinal panel analyses, should be sig-
nificant from the noncognitive trait to achievement. And sixth,
environmental experiences should mediate the association between
noncognitive traits and achievement though a genetic pathway
(Tucker-Drob and Harden, 2017). The evidence reviewed so far sup-
ports the first five criteria and consequently the possibility that trans-
actional processes operate not only for cognitive ability and achieve-
ment, but also for noncognitive characteristics.’

Future research identifying the specific environmental experiences
that mediate these genetic links will prove essential for the develop-
ment of evidence-based interventions. As Petrill and Wilkerson state in
an earlier review on the genetics of the association between intelligence
and achievement: ‘Far from passively receiving an educational program,
children may be actively seeking out and receiving enriched environments
based, in part, on genetic influences. Not only should our research begin to
identify these multiple influences on intelligence and achievement, but our
educational practices should also be more sensitive to these sources of in-
dividual differences’ (Petrill and Wilkerson, 2000).

Evidence stemming from behavioural genetic research on cognitive
and educational traits has provided valuable insights into why such
stark individual differences are observed at every stage over the life-
span. This wealth of knowledge should also guide how we evaluate
educational interventions (Sokolowski and Ansari, 2018). It is cus-
tomary to evaluate educational interventions on the basis of two chief
goals: first, interventions should provide a shift in the distribution of
ability, which would indicate that every child benefit from the inter-
vention; second, interventions should aim to reduce the gap between
high and low achievers. As argued by Sokolowski and Ansari, while the
first goal is feasible and highly desirable, as interventions should pro-
vide children with the opportunity to reach their full potential, given
what we know from genetic research, the second goal may not be as
reliable an index of successful interventions as it is traditionally as-
sumed. In fact, even if environmental experiences are equalized, re-
markable individual differences will still be observed, as these are
partly rooted in genetic differences between students (Sokolowski and
Ansari, 2018). While equal opportunities of access to educational re-
sources are highly desirable, these are unlikely to result in equivalent
abilities or achievement between students, which instead are the pro-
duct of a complex interplay between genetic and environmental pro-
cesses.

7.1. Implications for the present and future of educational practice

We propose that the evidence stemming from decades of beha-
vioural genetic research into cognitive ability and education is not only
valuable in informing the evaluation of educational interventions but
could also be integrated into the development and implementation of
successful personalized education. Educational curricula would benefit
from embracing individual differences between students, which are
partly due to genetic differences between them (Asbury and Plomin,
2013). Cutting-edge tools, like GPS, that are able to leverage informa-
tion on genetic differences between individuals to provide a probabil-
istic index of dispositions and capabilities, could be integrated into the
development of early interventions, particularly as an additional tool to
inform early screening.

Taking the example of reading disability, the capability to predict
whether a child is at risk of struggling with reading before the start of
schooling would provide parents and educators with an opportunity to
develop targeted intervention strategies that may result in better out-
comes (Plomin, 2019). This can be beneficial for several reasons. First,
early interventions have better prognoses. They are consistently found
to lead to greater improvements, particularly if sustained over devel-
opment (Sokolowski and Ansari, 2018). Second, at the moment, chil-
dren are screened for reading disabilities only when they start to dis-
play behavioural difficulties. This is not only highly inefficient, but it
could hinder children’s learning potential by promoting negative ex-
periences which would in turn impact achievement. In line with find-
ings from longitudinal research (e.g. Malanchini et al., 2017), children
who struggle with reading are more likely to develop negative attitudes
towards reading and to avoid reading. This is likely to generate a
downward spiral. Third, children who struggle with achievement are
more likely to show symptoms of anxiety related to learning (Ma et al.,
2004; Wang et al., 2018), this is not only detrimental for academic
performance, but, most importantly, it may have profound, long-lasting
consequence for students’ wellbeing and mental health.

The ability in the future to predict educational difficulties early in
development, even before they are manifested, is likely to be funda-
mental in ameliorating educational outcomes and experiences for all
students, but particularly for those at risk of struggling with learning
difficulties. Using genetic information as an additional early screening
tool may therefore prevent the spiralling negative consequences asso-
ciated with delayed diagnoses. The same principle can be applied to
several other aspects of learning, including noncognitive skills.

There are several caveats and limitations that apply to the
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possibility of integrating genetic prediction into personalized ap-
proaches to learning and interventions. First and foremost, GPS pre-
diction is far from perfect, accounting for at best ∼15 % of the varia-
tion in academic achievement at the end of compulsory education and
substantially less at earlier ages (Allegrini et al., 2019; Selzam et al.,
2017; Rimfeld et al., 2018b). GPS prediction will never reach 100%
because heritability is the ceiling for prediction. Of course, no predic-
tions in the behavioural sciences are perfect, which means that pre-
dictions at the individual level have wide confidence intervals. Conse-
quently, predicting variation in academic performance, particularly in
the early years, from DNA alone, is unlikely to lead to accurate results
for an individual, although at the extremes of the GPS distribution,
substantial average differences can be predicted. For example, for the
lowest decile of EA3, about 25 % go to university, whereas about 75 %
from the highest decile go to university (von Stumm et al., 2019).

Second, gene-environment interplay complicates attempts to un-
derstand the mechanisms by which genotypes become phenotypes.
Most notably, recent studies have shown that non-inherited genetic
variants can contribute to variation in phenotypes through their impact
on parents and other relatives, therefore, providing evidence for genetic
effects operating indirectly through the environment, a process termed
genetic nurture (Kong et al., 2018; Bates et al., 2018). Third, transac-
tional processes rooted in evocative and active gene-environment cor-
relation are likely to account for a substantial portion of the genetic
prediction of academic performance (Tucker-Drob and Harden, 2017;
Cheesman et al., 2019; Selzam et al., 2019). A more in-depth discussion
of these issues is available (Briley and Tucker-Drob, 2019). In light of
this interplay between genes and environments, identifying the specific
environmental and biological processes that lead from genetic predis-
position to observed variation in cognition and education remains one
of the major challenges for future research. Understanding the me-
chanisms by which genotypes become phenotypes is likely to lead to
advances in more effective personalised approaches to learning and
early interventions.

8. Conclusions

Genetic research into cognitive ability and education has provided
crucial insights into why children differ so widely in their aptitudes,
attitudes and appetites for learning. As our knowledge continues
growing and new methods and tools are developed, the information
that emerges from genetic research becomes increasingly tangible,
translational and actionable, for example by informing the way we
evaluate and develop educational interventions. Decades of twin stu-
dies and, more recently DNA-based discoveries, point to the importance
of genetic variation in cognitive ability and education and in their close
association. These genetic influences, however, do not just happen in
isolation, rather they are shaped by their interplay with the environ-
ment. Recent advances in molecular genetics provide increasingly
comprehensive and accessible tools that have been applied to the in-
vestigation of these complex processes of correlation and interaction
between genes and environments.

While our knowledge of the genetic and environmental under-
pinnings of the associations between cognitive ability and education
has grown exponentially in recent years, several gaps in our knowledge
still exist. First and foremost, longitudinal genetically informative re-
search into the association between cognitive ability and education is
still lacking. This is particularly important as genetic and environ-
mental influences on cognitive ability and educationally relevant pro-
cesses are not static, rather they evolve and shift during development
(e.g. Zheng et al., 2019; Briley and Tucker-Drob, 2017). In addition, we
need to develop novel ways to assess cognitive and educational traits
briefly and reliably in large samples to result in breakthroughs in ge-
netic discoveries. Lastly, research investigating how biologically re-
levant models of cognitive ability and educational traits can be in-
tegrated in educational practices, for example, by running randomized

control trials of intervention programmes, is still lacking. We look
forward to the next decades of behavioural genetic research into cog-
nitive ability and education, as we continue learning about learning.
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