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Abstract

Recent meta-analyses combining direct genome-wide association studies (GWAS) with

those of family history (GWAX) have indicated very low SNP heritability of Alzheimer’s dis-

ease (AD). These low estimates may call into question the prospects of continued progress

in genetic discovery for AD within the spectrum of common variants. We highlight dramatic

downward biases in previous methods, and we validate a novel method for the estimation of

SNP heritability via integration of GWAS and GWAX summary data. We apply our method

to investigate the genetic architecture of AD using GWAX from UK Biobank and direct case-

control GWAS from the International Genomics of Alzheimer’s Project (IGAP). We estimate

the liability scale common variant SNP heritability of Clinical AD outside of APOE region at

~7–11%, and we project the corresponding estimate for AD pathology to be up to approxi-

mately 23%. We estimate that nearly 90% of common variant SNP heritability of Clinical AD

exists outside the APOE region. Rare variants not tagged in standard GWAS may account

for additional variance. Our results indicate that, while GWAX for AD in UK Biobank may

result in greater attenuation of genetic effects beyond that conventionally assumed, it does

not introduce appreciable contamination of signal by genetically distinct traits relative to

direct case-control GWAS in IGAP. Genetic risk for AD represents a strong effect of APOE

superimposed upon a highly polygenic background.

Author summary

In this article we demonstrate that common approaches for combining direct and proxy

GWAS data produce dramatic underestimates of heritability, and we introduce a novel

multivariate method for recovering unbiased estimates. Applying our method to direct
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and proxy GWAS data for Alzheimer’s disease we obtain estimates of liability-scale SNP

heritability of AD outside of APOE region that are more than double the most recent esti-

mates. Our analysis of local SNP heritability indicates that nearly 90% of common variant

risk for Clinical AD represent a polygenic signal that is relatively diffusely distributed

across the genome outside of the APOE region. We add substantial clarity to the scientific

understanding the genetic architecture of AD, by introducing and validating new method-

ology that can be widely applied by researchers seeking to incorporate family information

into GWAS.

Introduction

Genome-wide association studies (GWAS) of proxy-phenotypes using family history of disease

(GWAX) can substantially boost power when combined with traditional case-control GWAS

across a range of disease traits [1,2]. The benefits of GWAX for enhancing GWAS discovery

have been particularly pronounced in the context of late-onset Alzheimer’s Disease (AD) [3–

5], a neurocognitive disorder of aging that is clinically characterized by significant cognitive

declines that interfere with independence in everyday activities, and biologically characterized

by amyloid-predominant neuritic plaques, tau-predominant neurofibrillary tangles, and neu-

rodegeneration [6–10]. Recent meta-analyses combining GWAX with direct GWAS have

expanded the number of AD-relevant loci far beyond the well-established APOE variant, to 75

loci in total [5]. However, despite a twin-based heritability estimates of approximately 60%

[11], these studies indicate very low common variant SNP heritability after excluding the

APOE region, with the most recently reported estimate of 2.5% coming from the largest com-

bined GWAX-GWAS meta-analysis of AD to date [4]. This estimate is noticeably lower than

estimates obtained from the application of both LDSC and raw data-based methods in earlier

studies that have only included direct case-control designs, albeit in smaller samples [12–14].

If valid, this low SNP heritability estimate may call into question the prospects of continued

progress in genetic discovery for AD within the spectrum of common variants.

Here, we revisit the genome-wide architecture of AD. In scrutinizing recent approaches for

estimating SNP heritability from GWAX, we find that even under scenarios in which the

assumptions of the standard GWAX model are met, commonly used approaches for combin-

ing GWAX and GWAS data produce dramatic underestimates of SNP heritability. We develop

a flexible data-driven multivariate framework for the accurate estimation of SNP heritability

from GWAS and GWAX summary data, even in the presence violations of the standard

GWAX assumptions. Using GWAS data from the International Genomics of Alzheimer’s

Project (IGAP) [12] and GWAX data from UK Biobank [3] our multivariate method yields

substantially increased heritability estimates for clinically defined AD relative to the recently

reported estimates from naïve meta-analysis of GWAS and GWAX data. We find that com-

mon genetic variants distributed outside of the APOE region account for between approxi-

mately 7% and 11% of variation in liability for Clinical AD. Informed by prevalence rates from

epidemiological and molecular imaging data we project that common variants distributed out-

side of the APOE region may account for approximately 23% of variation in liability for bio-

logical AD (Alpha+ and Tau+). Our cumulative analysis of local SNP heritability of AD

indicates a relatively continuous increase in genetic signal across the genome with a sharp dis-

continuity at the APOE locus, indicating that while the APOE region accounts for approxi-

mately 10% of common variant effects on AD, the remaining common variant risk for AD

represents polygenic signal that is diffusely distributed across the genome.
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Results

Overview of methods

Recent large scale meta-analyses combining direct-GWAS and GWAX data have used either

inverse variance weighted meta-analysis of regression coefficients [3,15] or sample size

weighted meta-analysis of Z statistics [4,16]. For the inverse variance approach, the standard

correction factor for GWAX of the phenotype of a single first degree relative using the off-

spring genotype is to multiply regression coefficients and their SEs by 2.0 to correct for 50%

attenuation due to 50% genetically relatedness (note that in the R2 metric, this amounts to 75%

attenuation). A similar correction to the Z statistics approach is possible (section 3 in S1 Sup-

plementary Note) but not typically made. However, even with such corrections, estimation of

SNP heritability from the summary statistics produced by either method produces estimates

that are severely biased, unless the sample size input is further corrected (section 4 in S1 Sup-

plementary Note). Moreover, GWAX estimates will be attenuated by more than the 50%

assumed by the standard correction under a wide range of circumstances such as those in

which: a proportion of genotyped individuals report on the phenotypes of their step or adop-

tive parents (such that average genetic relatedness of phenotyped and genotyped individuals

falls below 50%); individuals are not well-informed about, misremember or confuse their

parents’ phenotype or disease status (such that heritability of the GWAX phenotype is attenu-

ated, or contaminated by other heritable phenotypes); or the average diagnostic quality or cri-

teria differ between proxy reports of historical disease status and direct GWAS of carefully

screened case-control sample (such that heritability of the GWAX phenotype is attenuated).

Here, we develop a multivariate model that directly estimates the appropriate correction

empirically from the GWAX and direct GWAS summary data in order to produce unbiased

estimates of SNP heritability and SNP effects without manual correction of effect size esti-

mates, standard errors, or sample sizes.

Our multivariate model (section 5 in S1 Supplementary Note and S1 Fig) integrates sum-

mary data from three sources: direct GWAS, maternal GWAX, and paternal GWAX. In the

model, the total genetic propensity toward AD risk is represented as a latent factor, F, that is

specified to affect the direct GWAS phenotype and two GWAX phenotypes according to the

following system of regression equations

Ydirect

Ymat

Ypat
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where the λ coefficients relate F to measured phenotypes y, and the u terms are residual genetic

propensities toward each of the measured phenotypes that are independent of F, and uncorre-

lated with one another and with F. We specify the model with the minimal identification con-

straint that λdirect = 1 such that F takes on the scale of the direct GWAS phenotype, and s2
F can be

interpreted as an unbiased estimate of the SNP heritability of the meta-analyzed phenotype in

the direct GWAS metric. Note that the standard GWAX approach[1] implicitly treats λmat = λpat

= .5 and s2
uDirect
¼ s2

uMat
= and s2

uPat
= 0. Thus, under our more flexible multivariate parameteriza-

tion in which these terms are freely estimated, the departure of λmat and λpat from .5 and depar-

ture of the s2
u terms from 0 indicate departure of the empirical data from the standard GWAX

assumptions. If we are willing to assume that the direct GWAS represents the pure signal of

interest, uncontaminated from other heritable traits (e.g. other forms of dimension), we can fix

s2
uDirect

to 0, in which case the multivariate model becomes similar to the MTAG model [17,18].
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To estimate meta-analytic summary statistics using this multivariate model (section 6 in S1

Supplementary Note), we expand it to include the effect of an individual genetic variant, x, on

the F as follows

F ¼ gxþ e;

where γ is an unstandardized regression coefficient and e is a residual. As described in section

7 of in S1 Supplementary Note, a SNP-specific heterogeneity statistic (QSNP) is computed to

gauge the extent to which the regression coefficient γ does not well account for the pattern of

associations between that SNP and the individual GWAS and GWAX.

Models are estimated in Genomic SEM [18] using a two-stage approach. In the first stage,

the empirical liability-scale genetic covariance matrix and its sampling covariance matrix are

estimated. In the second stage, the model is fit to the matrices using the diagonally weighted

least squares (WLS) fit function with sandwich correction, as described in Grotzinger et al.

[18]. Beyond its flexible capabilities for user-specified modeling, Genomic SEM is advanta-

geous for its accommodation of unknown and varying degrees of sample overlap. This may be

particularly advantageous for instances in which individuals included in the GWAX are related

to those in the direct GWAS, or when users seek to incorporate GWAX from relatives who

may themselves be related (e.g. both brothers and sisters of the directly genotyped individuals

[18]). We refer to our multivariate model as a Genomic SEM Relaxed Model, in that it uses

Genomic SEM to relax the conventional assumption that λmat = λpat = .5. A complete tutorial

for our method, including detailed code, can be found in the Tutorials tab of https://github.

com/GenomicSEM/GenomicSEM/wiki.

Simulation results

We simulated genome-wide summary statistics for direct GWAS and maternal and paternal

GWAX manipulating the attenuation coefficients (λ) for maternal and paternal GWAX

assuming either continuous or binary traits. In experimental condition 1, the simple GWAX

model assumptions hold (i.e., λmat = λpat = .5). In experimental condition 2, we consider a

strong deviation from the simple GWAX model, (i.e., λmat = λpat = .25). In experimental condi-

tion 3 we set the attenuation coefficients to mimic those empirically estimated from our multi-

variate model using real GWAS and GWAX data (i.e., λmat = .463, λpat = .366). Although our

simulations refer to maternal and paternal GWAX, it is of note that our multivariate model

can incorporate family history GWAX data across diverse degrees of genetic relatedness. We

compared the Genomic SEM approach to a conventional uncorrected approach in which

GWAS and GWAX summary data are meta-analyzed without explicit consideration of

whether they were derived from direct or proxy data sources (cf. by Jansen et al. [16] and

Wightman et al. [4]) and the conventional corrected approach (reflective of those taken by

Marioni et al. [3], and Bellenguez et al. [5].

The top row of Figs 1 and 2 presents simulation results for continuous phenotypes (Fig 1)

and binary phenotypes (Fig 2) with respect to heritability estimates from conditions in which

sample size is held constant and the λ coefficients vary, reflecting different degrees of deviation

from the simple GWAX assumption that λmat = λpat = .5. Note that liability scale heritability

estimates are reported for binary phenotypes. Supplemental results for the recovery of SNP

heritability for continuous traits in conditions with varying sample size are reported in S11

Table and displayed in S2 Fig. The multivariate Genomic SEM approach provided essentially

unbiased heritability estimates (h2
F) across all conditions, outperforming the conventional

(uncorrected) approach in all conditions, and outperforming the conventional (uncorrected)

approach, the conventional approach with standard correction, and the conventional approach
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with standard and liability correction in conditions in which the assumptions of the simple

GWAX model did not hold, for both continuous (Percent Bias Error, %BE, range for conven-

tional [uncorrected] approach: 76.97%-88.91%; %BE range for conventional [standard correc-

tion]: 21.39%-55.56%; %BE range Genomic SEM relaxed model: 0.04%-0.36%), and binary

traits (%BE, range for conventional [uncorrected] approach: 75.93%-86.94%; %BE range for

conventional [standard correction]: 61.68%-71.85%; %BE range for conventional [standard

+ liability correction]: 10.82%-34.48%; %BE range Genomic SEM relaxed model: 1.69%-

2.65%). As expected, the conventional approach with the standard correction (for continuous

traits), and the conventional approach with standard and liability corrections (for binary

traits), performed similarly to the Genomic SEM approach when the standard assumption that

λmat = λpat = .5 held. Bias in the conventional approaches was related to the extent to which the

population values of λmat and λpat deviated from .5.

The bottom row of Figs 1 (continuous traits) and 2 (binary traits) presents simulation

results with respect to individual SNP effects for conditions in which sample size is held con-

stant and the λ coefficients vary. Supplemental results for recovery of individual SNP effects

for continuous traits with varying sample size across conditions are provided in S12 Table and

S3 Fig. Results for the recovery of individual SNP effects were consistent with those for the

recovery of heritability. Our multivariate Genomic SEM approach exhibited consistently unbi-

ased performance across all conditions (%BE range 0.32%-1.49%), outperforming the conven-

tional uncorrected and corrected approaches in all conditions for continuous traits (Percent

Bias Error, %BE, range for conventional [uncorrected] approach: 64.19%-78.33%; %BE range

for conventional [standard correction]: 1.01%-33.46%; %BE range Genomic SEM relaxed

model: 0.23%-0.87%), and the conventional uncorrected and corrected approach in conditions

Fig 1. Simulation Results for continuous phenotypes. Distribution of SNP heritability estimates (top row) and individual SNP effects (bottom row) for Conventional

(Uncorrected), Conventional (Standard Correction), and Genomic SEM Relaxed Model across conditions. The vertical dashed red lines indicate the true parameter

value in the population. Complete simulation results for all conditions for continuous traits are reported in S2, S3, S10 and S11 Tables.

https://doi.org/10.1371/journal.pgen.1010208.g001
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in which the assumptions of the simple GWAX model did not hold for binary traits (Percent

Bias Error, %BE, range for conventional [uncorrected] approach: 50.40%-63.44%; %BE range

for conventional [standard correction]: 5.88%-18.75%; %BE range Genomic SEM relaxed

model: 0.29%-0.59%). When the simple GWAX model assumptions held, the Genomic SEM

approach and the conventional approach with the standard correction were both unbiased,

but the conventional approach without correction remained biased. Bias in the conventional

approaches was related to the extent to which the population values of λmat and λpat deviated

from .5.

We additionally simulated GWAS and GWAX summary statistics under a null scenario in

which genetic covariances among GWAS and GWAX were set to 0, which we analyzed using

the multivariate Genomic SEM model. In this scenario, the GWAS and GWAX represent

genetically distinct phenotypes, such that a factor representing their shared genetic architec-

ture is expected to produce a heritability estimate of 0. As expected, the mean SNP heritability

across replications was 0%, indicating an unbiased parameter estimate. Moreover, SNP herita-

bility was significant at p< .05 in none of hundred replications (S9 Table), compared to an

expected frequency of 5, indicating appropriate, if not conservative, Type-I error control.

Multivariate model of direct GWAS and GWAX of Alzheimer’s disease

We applied our multivariate model to empirical summary data from the direct case-control

GWAS of AD in IGAP [12] and GWAX of maternal and paternal AD in UK Biobank [3]. Key

descriptive statistics for these three contributing datasets are reported in the top portion of

Table 1, and multi-trait LDSC results (cross trait intercepts and genetic correlations) are

Fig 2. Simulation Results for binary phenotypes. Distribution of liability-scale SNP heritability estimates (top row) and individual SNP effects (bottom row) for

Conventional (Uncorrected), Conventional (Standard Correction), Conventional (Standard + Liability Correction), and Genomic SEM Relaxed Model across

conditions. The vertical dashed red lines indicate the true parameter value in the population. Complete simulation results for all conditions are reported in S2 and S3

Tables.

https://doi.org/10.1371/journal.pgen.1010208.g002
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provided in S4 Fig. Note that all LDSC estimates reported in Table 1 and S4 Fig are derived

from LD scores based on common variants (MAF� .05) outside of the MHC and APOE
regions, using the AD population prevalence rate of 5%. Cross-trait intercepts among IGAP

and the maternal and paternal GWAX were all ~0, indicating that there was effectively no sam-

ple overlap or dependency between LDSC estimates. Genetic correlations were close to 1.0

between IGAP and maternal AD (rG = 0.915, SE = 0.153, p< 0.001) and paternal AD

(rG = 0.842, SE = 0.206, p< 0.001) in UKB. The genetic correlation between maternal and

paternal AD was also very high (rG = 0.815, SE = 0.253, p = 0.001).

In the bottom portion of Table 1 we provide key descriptive of summary statistics from our

multivariate meta-analysis and from two recent meta-analyses that have combined GWAS and

GWAX AD data [3,16]. Estimates from the full multivariate model of AD are displayed in Fig

3. In the model itself, the liability-scale SNP heritability estimate was 6.95% (SE = 3%) assum-

ing a population prevalence of 5%, over double that estimated by application of LDSC to the

summary statistics from the other two recent AD meta-analyses, using their reported sample

sizes, assuming the same population prevalence. A version of the model that constrained resid-

ual variance of the direct GWAS to 0 (reflecting the assumption that the direct GWAS does

not contain ancillary genetic signal unrelated to AD) did not produce a significant decrement

in model fit (χ2(1) = .021, p = .89) and produced a slightly larger liability scale SNP heritability

estimate (7.17%) with a substantially smaller standard error (SE = 1.21%).

Applying LDSC to GWAS summary statistics produced by our multivariate method pro-

duced a very similar liability-scale SNP heritability estimate (6.9%, SE = .8%; Table 1; assuming

a 5% population prevalence rate) to that produced by the model itself. In the full model, the

unstandardized loading for maternal AD (λmat = .463) was slightly attenuated with respect to

Fig 3. Unstandardized (left) and standardized (right) empirical results from multivariate genetic analysis of Alzheimer’s disease. The liability-

scale SNP heritability estimate of 6.9% is on the scale of the direct GWAS, and is for common variants (MAF� .01) outside of the MHC and

APOE regions, using the AD population prevalence of 5%. u = residual genetic variance.

https://doi.org/10.1371/journal.pgen.1010208.g003
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the expectation under the standard GWAX model (λmat = .5). The unstandardized loading for

paternal AD (λpat = .366) reflected approximately 27% attenuation of regression effects (i.e.[.5-

.366]/.5) and approximately 46.42% attenuation of R2 and liability-scale h2 estimates ([.52-

.3662]/[.52]) relative to the expectation under the standard model (λpat = .5). Allowing the λmat

and λpat parameters to be freely estimated can avoid the potential for bias stemming from vio-

lations of the standard assumption, in this case particularly for paternal effects, when estimat-

ing genome wide meta-analytic summary statistics. Residual variances for the direct GWAS

and both GWAX were trivial, indicating that the GWAS and GWAX were not tapping geneti-

cally distinct phenotypes to an appreciable extent. We note that the liability-scale heritability

estimates reported in this section are based on an assumed AD population prevalence rate of

5%, as per the LDSC analyses by Wightman et al. [4]. Next, we consider sensitivity of the heri-

tability estimate to different assumptions regarding the sample and population prevalence

rates of AD.

Liability scale heritability across a range of assumed population prevalence

rates

Heritability estimates for case-control traits, such as AD, are based on a liability threshold

model, which assumes a continuously distributed liability toward the binary phenotype in the

population. Estimates of liability-scale SNP heritability are sensitive to assumptions about the

lifetime prevalence of the disorder in the population and the extent to which unaffected indi-

viduals have been successfully screened for the disorder (see Methods). When population

prevalence rates are high or when control participants are unscreened, differences in allele fre-

quencies between cases and controls represent less extreme comparisons along regions of the

liability distribution. In such circumstances, the inferred liability scale heritability is higher

than would be inferred from the same case-control difference in allele frequencies for a disor-

der with a lower population prevalence or when control participants have been carefully

screened. This issue is particularly germane to the study of AD, a disorder whose: (i) clinical

prevalence rate increases from less than 1% in middle adulthood to approximately 30% by old

age [19], (ii) that is known to go undetected at high rates for decades prior to diagnosis due to

ancillary factors (e.g. educational attainment) unrelated to biological severity [20], and (iii)

whose pathophysiological basis may be more than twice as prevalent as its clinical diagnosis at

any given age [10].

To gauge the effects of assumptions regarding population prevalence on our liability-scale

SNP heritability estimate for AD, we varied the assumed population prevalence rate. We pro-

vide rough age equivalents of these prevalence rates based on published epidemiological data

for Clinical AD [19], assuming that control participants were appropriately screened. We refer

to this estimate as the estimate of heritability of Clinical AD, in that this estimate does not

account for biological AD that is likely to exist in a potentially sizable subset of control partici-

pants. Estimates from the full multivariate model are displayed in the left panel of Fig 4 (esti-

mates from the application of LDSC to the summary statistics from our multivariate meta-

analysis were very similar; S7 Fig). Heritability estimates of Clinical AD increase as the popula-

tion prevalence rate increases, reaching approximately a liability-scale h2 = 12% at preva-

lence = 30%. We note that Wightman et al. [4], estimate a liability-scale heritability of 2.5%

assuming a population prevalence rate of 5%. At this same prevalence rate, the estimate from

our full multivariate model is over double (liability h2 = 6.95%) that of Wightman et al. This is

likely a reflection of the fact that Wightman et al. do not appear to make any correction to

their LDSC estimate to account for any attenuation in the GWAX estimates due to their indi-

rect nature.
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We also estimated liability-scale SNP heritability (for common variants outside of the MHC

and APOE regions) across a range of different assumed prevalence rates of biological AD,

employing a correction for case contamination (see Methods) in control participants (who

were primarily screened for Clinical AD but not AD pathology) and provide rough age equiva-

lents of these prevalence rates for biological AD (Alpha+ and Tau+) from recently published

positron emission tomography data [10]. We refer to this estimate as the projected estimate of

biological AD heritability. Results are displayed in the right panel of Fig 4. Heritability esti-

mates increase steeply as the prevalence rate increases, reaching approximately a liability-scale

h2 = 23% at a population prevalence of 30%. The steeper shift in the SNP heritability of AD for

biological AD compared to clinical AD stems from our correction for undetected biological

AD within control participants who have primarily only been screened for clinical AD. As the

assumed prevalence rate of biological AD increases, the extent of case contamination in con-

trol participants increases, and the correction for undetected AD in control participants pro-

duces more dramatic increases in the projected heritability. The validity of this inference relies

on the assumptions that individuals with clinical AD diagnoses are representative of the larger

set of individuals with biological AD, and do not constitute a subgroup of those with more

severe biological AD. This assumption is supported by a large body of work indicating that

ancillary factors, such as educational attainment, are associated with clinical AD rates among

individuals with equivalent levels of brain pathology [20].

Fig 4. Estimated common variant liability-scale SNP heritability of AD (outside of the MHC and APOE regions) according to different assumptions regarding the

population prevalence of Clinical AD and Biological AD (Alpha+ and Tau+). We provide rough age equivalences for each prevalence rate on the top x axis. The purple

diamond represents the estimate of 2.5% by Wightman et al. [4], which was based on an assumed population prevalence rate of 5%. The yellow diamond represents the

estimate from the multivariate model introduced here, using the same assumed population prevalence rate of 5% (Clinical AD h2 liability = 0.069; Biological AD h2

liability = 0.073). The shaded area around the line reflects +/- 1 SE of the h2 estimate. The steeper shift in the SNP heritability of AD for biological AD compared to

clinical AD as a function of population prevalence stems from the correction for undetected biological AD within control participants who primarily only been

screened for clinical AD. As the assumed prevalence rate of biological AD increases, the extent of case contamination in control participants increases, and the

correction for undetected AD in control participants produces more dramatic increases in the projected heritability. Biological AD prevalence rates are from recently

published positron emission tomography data [10].

https://doi.org/10.1371/journal.pgen.1010208.g004
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Liability scale heritability using stratified LDSC

To allow for potentially uneven contributions of SNPs to heritability across biologically, evolu-

tionarily, and MAF defined categories, we fit our Genomic SEM relaxed model to a genetic

covariance matrix derived using stratified LDSC [21] based on 97 baseline annotations [22],

assuming 5% population prevalence. We obtained larger, albeit less precise, estimates of liabil-

ity-scale SNP heritability (h2 = 8.94%, SE = 5.17%) than those obtained when using the stan-

dard LDSC model (h2 = 6.95%, SE = 3%).

Inferring common variant polygenicity from local SNP heritability

Our results indicated relatively high common variant SNP heritability of AD outside of the

APOE locus. To investigate whether this SNP heritability was attributable to a small number of

genomic regions, or distributed more evenly across the genome, we used Heritability Estima-

tion from Summary Statistics (HESS) [23] to estimate local common variant SNP heritability

in 1,703 approximately independent blocks across the genome using the summary statistics

from our multivariate meta-analysis. Following Sinnott-Armstrong et al. [24], we plot the pro-

portion cumulative heritability of AD liability across the genome in Fig 5. Because HESS allows

for negative estimates of local SNP heritability, estimation error is not expected to produce

increases in cumulative heritability; only true polygenic signal will produce such increases. It

can be seen that heritability accumulates relatively continuously across the entirety of the

genome, with a pronounced discontinuity at the APOE locus on chromosome 19. This locus

accounts for 10.53% of total common variant SNP heritability of AD in the liability scale, indi-

cating that most of common variant SNP heritability is attributable to genetic signal indepen-

dent of APOE. Local SNP heritability in the other loci that were genome-wide significant in

Fig 5. Proportion of cumulative heritability of Clinical AD across the genome, as estimated with HESS (24). Yellow triangles represent genome-wide

significant loci from the multivariate GWAS of AD.

https://doi.org/10.1371/journal.pgen.1010208.g005
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the multivariate GWAS was strongly correlated with their GWAS effect sizes (S8 Fig) and

accounted for an additional 9.46% of the total common variant liability-scale SNP heritability,

leaving 79.98% of the total common variant liability-scale SNP heritability unexplained by

genome-wide significant loci. The observations that heritability accumulates relatively contin-

uously outside of the APOE locus and that substantial proportion of SNP heritability remains

outside of genome-wide significant loci suggests that genetic risk for AD may be affected by

core pathways superimposed on a more diffuse polygenic background. Using the conservative

estimate of population prevalence of 5% the total heritability of AD on the liability scale as esti-

mated with HESS was 11.09% (9.92% excluding the APOE locus). Similar patterns were

observed when HESS analyses were limited to GWAS data from IGAP only (S9 Fig).

Multivariate results for individual SNP effects

We estimated meta-analytic summary statistics containing individual SNP effects on AD in

our multivariate model using Genomic SEM, a Manhattan plot for which is provided in S5

Fig, and qqplots for which are provided in S6 Fig. The mean χ2 for the common factor GWAS

output was 1.139. The mean χ2(1) for QSNP was 1.008, and there were no genome-wide signifi-

cant (p< 5 × 10−8) hits for QSNP, indicating little evidence for genome-wide heterogeneity in

SNP effects across direct GWAS, maternal GWAX, and paternal GWAX after the empirically

derived attenuation coefficients (λ) are taken into account. The LDSC intercepts were all very

close to 1.0, indicating that inflation of test statistics was predominately attributable to true

polygenic signal rather than population stratification (Table 1).

We identified 282 independent significant SNPs and 93 lead SNPs in a total of 24 genome-

wide significant loci associated with AD (S4–S8 Tables). All of these significant loci were previ-

ously reported in published meta-analysis of GWAX and direct GWAS of AD by Marioni et al.

[3], Jansen et al. [16], or Schwartzentruber et al. [25]. For the genome-wide significant loci, we

computed meta-analytic estimates using the inverse variance weighted approach and the Z

approach. We applied each approach both naively (i.e. without correction) and with a correc-

tion for attenuation due to the indirect nature of the GWAX with the standard correction (S6

Table). As expected, based on the fact that the empirically derived λ coefficients from our

model were close to .5, we found that that the inverse variance weighted approach with the

standard correction produced effect size estimates similar to those from our meta-analytic

model. In contrast, the uncorrected approaches produced substantially deflated effect size esti-

mates. The Z Statistic approach, even with the standard correction, still tended to produce

somewhat deflated effect size estimates. This can be attributed to the fact that the correction

employed corrected for attenuation due to the indirect nature for the GWAX, but did not cor-

rect for variability in prevalence rates stemming from the ascertained nature of the samples.

Discussion

Recent reports of very low SNP heritability of AD have called into question the prospects of

continued progress in genetic discovery for AD within the spectrum of common variants. We

have demonstrated that common methods used to produce these estimates are dramatically

downwardly biased. We have introduced and validated a novel multivariate method for the

joint analysis of direct GWAS and proxy GWAX summary data that relaxes standard assump-

tions and recovers unbiased estimates of common variant SNP heritability and of individual

SNP effects under a variety of conditions. Compared to other naïve methods that boost power

for estimating individual SNP effects on one phenotype by incorporating GWAS data from

correlated phenotypes, our multivariate model specified within Genomic SEM is a formal

model of multivariate genetic architecture from which both interpretable genome-wide
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parameters of interest, and individual SNP-specific effects can be estimated. Additionally, our

model is unique in providing indices for violation of assumptions (e.g. QSNP, see section 7 in

S1 Supplementary Note), which may safeguard against cross-contamination of genome-wide

signals across correlated traits.

Using recently released GWAS and GWAX summary data for AD, we find some modest

deviations of the patterning of genetic sharing from that expected under the standard GWAX

model. In particular, whereas the standard GWAX model assumes that genetic effects are

attenuated by 50% (in regression units; i.e. by 75% in R2 units) relative to direct GWAS, we

estimate somewhat greater attenuation: 54% (i.e. 1-.463) for maternal GWAX and 63% (i.e. 1-

.366) for paternal GWAX. Interestingly, residual genetic variance specific to the individual

GWAX was trivial, and there was no evidence of heterogeneity (QSNP) of individual SNP

effects beyond that expected based on our multivariate model. Taken together, these results

suggest that GWAX for Clinical AD in UK Biobank may result in greater attenuation of

genetic effects beyond that conventionally assumed, but does not introduce appreciable con-

tamination of signal by genetically distinct traits relative to direct GWAS in IGAP.

Our multivariate method estimates the common variant liability-scale SNP heritability of

AD excluding the APOE region to be more than double the recent estimate of 2.5% by Wight-

man et al. [4], when using same assumptions regarding population prevalence. This estimate

rises to as high as 11% for Clinical AD and 23% for biological AD when considering prevalence

rates indicated by collateral epidemiological and neuroimaging data. Of course, the estimated

range of plausible values for the heritability of biological AD are based on assumptions regard-

ing the extent to which the genetic signal represented in individuals diagnosed with clinical

AD can be extrapolated to individuals with latent biological AD. Future research into the

genetic architecture of biological AD will benefit from the large scale genomic analysis of direct

measures of AD pathophysiology using, for example, positron emission tomography [10].

Analysis of local SNP heritability indicates that almost 90% of common variant SNP herita-

bility of AD exists outside of the APOE region. We find that this remaining heritability accu-

mulates relatively continuously across the remainder of the autosome, indicating that a

portion of genetic risk for AD is characterized by a relatively diffuse polygenic architecture.

This pattern resembles that recently observed for three molecular traits whose biological path-

ways are well-understood [24]. These authors inferred that core gene sets representing proxi-

mal biological mechanisms play a sizable role in each trait, but that “most of the SNP-based

heritability is driven by a massively polygenic background.” Our results suggest that the same

may pertain to the genetic architecture of AD, as has been generally postulated for complex

traits by the omnigenic model [26].

Background polygenic architecture may reflect biological mechanisms underlying the

pathophysiology of AD or ancillary factors that affect the likelihood of diagnosis of Clinical

AD without contributing to disease onset or progression. The strongest candidates for such

ancillary factors may be educational attainment and premorbid cognitive functioning, both of

which longitudinal research indicates are not related to the onset or rate of cognitive decline

but are related to the likelihood that declines will be detected by existing diagnostic protocols

[7,27]. Genetic correlation analyses indicated that while these factors are indeed genetically

correlated with AD, less than approximately 4% of SNP heritability of AD is explained by

either factor, indicating that they are not by themselves sufficient to account for the polygenic

component of AD genetic architecture. Longitudinal genomic research of neurocognitive

change preceding and predicting eventual clinical AD will be of particular value for identifying

pathways that may contribute to the polygenic risk for AD pathophysiology.

It is important to consider that the estimates of common variant SNP heritability from our

multivariate modeling are based on the integration of summary data across many different
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cohorts. Between-cohort variability in the genetic architecture of AD across cohorts, and in

methods for ascertainment and diagnosis can lead to attenuation of heritability during the

aggregation process. Indeed, raw data based estimates of heritability using more homoge-

neous, yet smaller, cohorts [28] have often produced even larger heritability estimates than

those reported here. This discrepancy could also be explained by the distribution of SNP effects

of AD. If the core pathways for AD consist of a small number of causal variants with relatively

large effects, then approaches that rely on assumptions of high polygenicity and normally dis-

tributed SNP effects may be yield underestimates of SNP heritability.

Our primary models relied on genetic covariance estimates derived using the standard

LDSC model, which assumes homogeneous contributions to trait heritability across SNPs.

Importantly, liability scale SNP heritability estimates continued to be sizable when alternative

estimation methods were used. For instance, HESS allows for heritability to vary across differ-

ent regions of the genome. The liability scale SNP heritability estimate obtained by applying

HESS to the summary statistics produced by our multivariate model was 11.09% (9.92%

excluding the APOE locus), assuming a population prevalence of 5%. Moreover, stratified

LDSC allows for potentially uneven contributions of SNPs across biologically, evolutionarily,

and MAF defined categories. When we fit our multivariate model to a genetic covariance

matrix derived using stratified LDSC using 97 annotations, we obtained an estimate of liability

scale SNP heritability of 8.94%, assuming a population prevalence of 5%. Importantly, we fol-

lowed the standard practice of estimating genetic covariances using common variants. Rare

variants not tagged in standard GWAS are likely to account for additional variance beyond the

heritability estimates reported here. Whether the genetic covariance structure across GWAS

and GWAX phenotypes differs for rare variants compared to common variants is an open

question.

Methods

Bias in conventional meta analyses combining GWAS and GWAX

Recent large scale meta-analyses combining direct-GWAS and GWAX data have used either

inverse variance weighted meta-analysis of regression coefficients [3,29] or sample size

weighted meta-analysis of Z statistics [4,16,30]. For the inverse variance weighted approach, it

is well-known that because of the indirect nature of the GWAX, the regression coefficients and

associated standard errors (the squares of which represent the sampling variances used for

inverse variance weighting) must be multiplied by a correction factor prior to meta-analysis

[1]. The standard correction factor for GWAX of the phenotype of a single first degree relative

using the offspring genotype is 2 to correct attenuation due to 50% genetically relatedness.

Although not commonly implemented in the literature, we show in section 3 in S1 Supplemen-

tary Note that a correction must also be made when implementing the Z statistic approach.

We show that for a continuous trait, the sample size must be divided by the square of the cor-

rection factor (e.g. by 4 for the standard correction) when implementing the Z statistic

approach, with further corrections to sample size needed for case-control traits in ascertained

samples. Naïve analysis of GWAX summary statistics produces SNP heritability estimates that

are downwardly biased by 75% or more. This bias will carry forward in meta-analysis combin-

ing direct GWAS with GWAX statistics (see section 4 in S1 Supplementary Note and simula-

tion below). This will occur when estimating SNP heritability from summary statistics even

when regression coefficients and SEs have been corrected, because methods for estimating

SNP heritability typically rely on the ratio of the regression coefficients to their standard errors

(i.e. the Z statistics), which is preserved under the correction. We show that entering the effec-

tive sample size (obtained by dividing the observed N by the square of the correction factor)

PLOS GENETICS Modeling polygenicity of Alzheimer’s disease

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010208 June 3, 2022 14 / 28

https://doi.org/10.1371/journal.pgen.1010208


will produce the unbiased SNP heritability estimate when the appropriate correction factor is

known (if the phenotype is a case-control trait, a conversion of the heritability estimate from

the observed scale to the liability scale is still called for).

Whether the standard correction factor of 2.0 for GWAX regression coefficients is appropriate,

and if not, how the appropriate correction factor can be identified is an unaddressed topic. The

standard correction factor is derived simply on the basis of the 50% attenuation to regression esti-

mates expected when proxy cases are first degree relatives of the genotyped individuals. However,

attenuation will be more severe, such that the standard correction is insufficient, under a wide

range of circumstances, such as those in which: a proportion of genotyped individuals report on

the phenotypes of their step or adoptive parents (such that average genetic relatedness of pheno-

typed and genotyped individuals falls below 50%), when individuals are not well-informed about,

misremember or confuse their parents’ phenotype or disease status (such that heritability of the

GWAX phenotype is attenuated, or contaminated by other heritable phenotypes), or when the

average quality of the diagnostics is of lower quality for parental history reports than for direct

GWAS of carefully screened case-control sample (such that heritability of the GWAX phenotype

is attenuated, or contaminated by other heritable phenotypes). We derive the expected attenuation

bias to both regression coefficients and heritability and genetic covariance estimates analytically in

section 3 and 4 in S1 Supplementary Note. Below, we introduce a data-driven multivariate

approach for meta-analyzing GWAX and direct GWAS summary data that estimates the amount

of attenuation in the GWAX (and thus the appropriate correction) directly from the data. Our

approach formally models the genetic covariance structure of the GWAX and direct GWAS sum-

mary data in order to produce unbiased estimates of SNP heritability and individual SNP effects

without manual correction of effect size estimates, standard errors, or sample sizes.

A relaxed multivariate model for combining GWAS with GWAX

We use Genomic SEM to estimate a multivariate model of genetic risk for AD using summary

data from three sources: direct GWAS, maternal GWAX, and paternal GWAX. In our multi-

variate model, the total genetic propensity toward AD risk is represented as a latent factor, F,

that is specified to affect the direct GWAS phenotype and two GWAX phenotypes according

to the following system of regression equations

Ydirect

Ymat

Ypat

2

6
6
4

3

7
7
5 ¼

ldirect

lmat

lpat

2

6
6
4

3

7
7
5F þ

udirect

umat

upat

2

6
6
4

3

7
7
5;

or more compactly as

Y ¼ LFþ U;

where Λ is a vector of coefficients relating F to measured phenotypes Y, and U constitutes

residual genetic propensities toward each of the measured phenotypes that are independent of

F, and uncorrelated with one another and with F. This model is represented as a path diagram

in S1 Fig (excluding the dashed portion).

This model implies that the genetic covariance matrix for YDirect, YMat, and YPat is given as

S ¼ LCL
0
þY;

whereC represents the covariances among the factors (and in this case contains a single ele-

ment, representing the variance of F, i.e. s2
F), and Θ represents the covariances among the

residuals, U (in this case a 3×3 diagonal matrix with diagonal elements s2
uDirect

; s2
uMat

, and s2
uPat

).
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We specify the model with the minimal identification constraint that λdirect = 1 such that F
takes on the scale of the direct GWAS phenotype, and s2

F can be interpreted as an unbiased

estimate of h2
SNP of the meta-analyzed phenotype in the direct GWAS metric. Under this

parameterization the departure of λmat and λpat from .5 indicates departure of the empirical

data from the standard GWAX model. We also consider an alternative parameterization in

which we specify the model with the minimal identification constraint that s2
F ¼ 1, such that

the variance of the latent factor F is standardized, and the freely estimated term λDirect can be

interpreted as an unbiased estimate of
ffiffiffiffiffiffiffiffi
h2

SNP

p
of the meta-analyzed phenotype in the direct

GWAS metric. Under this parameterization, departure of λmat/λdirect and λpat/λdirect from .5

indicates departure of the empirical data from the standard GWAX model. Both parameteriza-

tions produce equivalent, just identified models, with 0 degrees of freedom, but differ in how

parameters must be interpreted. These models can straightforwardly be extended to estimate

genetic correlations between F and external GWAS phenotypes, such as educational

attainment.

Estimation of SNP effects for multivariate GWAS

The multivariate model can be expanded to include the effect of an individual genetic variant,

x, on the latent factor, F (S1 Fig, including the dashed portion). Such a model comprises the

following two sets of equations:

Y ¼ LFþ U;

F ¼ gxþ e;

where γ is an unstandardized regression coefficient and e is a residual. Such a model can be

run for all available SNPs, one at a time, such that a complete set of meta-analytic summary

statistics for F (in this case, AD), can be produced from the relaxed multivariate model. We

use the minimal identification constraint λdirect = 1, such that γ takes on the scale of the direct

GWAS. To avoid the potential for variability in the optimization of the Λ and Θ parameters

that may obscure interpretation of the γ coefficients across SNPs, we fixed these parameters to

their values from the model without SNPs when estimating the model for each SNP in our

empirical analysis. The resulting summary statistics from this multivariate GWAS serve as an

alternative to those produced by more constrained Z statistic-based and (both corrected and

uncorrected) inverse variance- based approaches. When contributing GWAS and GWAX are

independent, as is the case for the empirical application presented here, the Effective N associ-

ated with the summary statistics from our multivariate model is calculated as NeffDirect + Neff-

Paternal
�λPaternal

2 + NeffMaternal
�λMaternal

2, where the λs are unstandardized factor loadings from

the model. For summary statistics derived from a GWAS or GWAX meta-analysis, Neff =

∑4vk(1−vk)nk, and vk is the sample prevalence for contributing study k. See Grotzinger et al.

[31] for further detail.

Model estimation

Models are estimated in Genomic SEM [18] using a two-stage approach. In the first stage, the

empirical liability-scale genetic covariance matrix S and its sampling covariance matrix V are

estimated using a multivariate version of LDSC. When the model to be fit includes individual

SNP effects, the S matrix is expanded to include a vector of genetic covariances between the

SNP and each of the GWAS and GWAX phenotypes that is derived directly from the univari-

ate GWAS and GWAX estimates. The associated V matrix is also expanded using cross-trait
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intercepts from LDSC in order to take any potential sample overlap (known or unknown)

and/or shared stratification implied by the LDSC model into account. In the second stage,

the model is fit to the S matrix, and free parameters are estimated such that they minimize

the discrepancy between S and S using the diagonally weighted least squares (WLS) fit func-

tion with sandwich correction, with weights derived from V, as described in Grotzinger et al.

[18].

In a sensitivity analysis of the empirical data, we estimated the S matrix and its associated V

matrix using stratified LDSC instead of LDSC, so as to allow for potentially uneven contribu-

tions of variants to heritability across biologically, evolutionarily, and MAF defined categories.

Stratified LDSC was estimated with stratified Genomic SEM using 97 baseline annotations

[21,32].

Note that the liability scale heritability is sensitive to assumptions about the population

prevalence of AD. In our analyses of empirical data, our primary models set the population

prevalence rate of AD at 5% used by Wightman et al. [4] to produce their estimate of liability-

scale h2 of 2.5%., but we consider sensitivity of liability scale heritability estimates to other val-

ues, and to the possibility of undiagnosed AD within control participants (see Prevalence

Rates in Relation to the Heritability of Clinical AD and AD Pathology, below). We also specifi-

cally compare estimates to those obtained with a population prevalence of 5% used by Wight-

man et al. [4] to produce their estimate of liability-scale h2 of 2.5%.

Simulation study of SNP heritability

Simulation of summary statistics. We simulated genome-wide summary statistics for

direct GWAS and maternal and paternal GWAX manipulating the attenuation coefficients

(λ) for maternal and paternal GWAX assuming both continuous and binary traits. For

binary traits we matched the sample prevalence for direct GWAS and maternal and paternal

GWAX with those from IGAP (v = 0.344), UKB maternal (v = 0.096) and UKB paternal

(v = 0.055), and a population prevalence of .05. S1 Table provides the details of the experi-

mental design of our simulation study. For continuous traits, we provide six supplemental

experimental conditions in which we additionally manipulated the sample size for the

GWAX phenotypes compared with the direct GWAS (S10 Table). We simulated data for

three phenotypes (direct GWAS, maternal GWAX, and paternal GWAX) per replication,

and 100 replications per each of the conditions, for a total of 3,600 simulated sets of summary

statistics. (As described below, each set of three summary statistics is then analyzed accord-

ing to three meta-analytic methods, for a total of 3,600 meta-analyses). We used the parame-

ter specifications provided in Table 1 to produce implied population-level genetic covariance

matrices, S, calculated as

h2
1

sg1;2 h2
2

sg1;3 sg2;3 h2
3

2

6
6
4

3

7
7
5 ¼ LCL

0
¼

l
2

1
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l1l2h2
F l

2
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l1l3h2
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F
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6
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4

3

7
7
5;

Where C ¼ h2
F and Λ is the vector of attenuation coefficients (i.e. factor loadings, λ). We

then used the LD scores for European population for M = 1,184,461 common Hapmap3 SNPs

(MAF>.01 excluding the MHC region) provided by Bulik-Sullivan et al. [33], to simulate sum-

mary data for three phenotypes according to the multivariate LDSC equation, i.e.

½Z1j;Z2j;Z3j� � Nð½0; 0; 0�; covðZ1j;Z2j;Z3jÞÞ;
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where

covðZ1j;Z2j;Z3jÞ

¼

N1

h2
1

M
‘ jð Þ þ 1þ a1

ffiffiffiffiffiffiffiffiffiffiffi
N1N2

p sg1;2

M
‘ jð Þ þ

r12Ns12ffiffiffiffiffiffiffiffiffiffiffi
N1N2

p N2

h2
2

M
‘ jð Þ þ 1þ a2

ffiffiffiffiffiffiffiffiffiffiffi
N1N3

p sg1;3

M
‘ jð Þ þ
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and [Z1j, Z2j, Z3j] represents the Z statistics for the three GWAS/GWAX phenotypes, N is the

sample size of the corresponding GWAS/GWAX, M is the number of SNPs including in the

LD file, ℓ(j) is the LD score of SNP j (that is, the sum of squared correlations between the SNP

and all other SNPs), Ns is the number of overlapping individuals in the corresponding GWAS/

GWAX, ρ is the phenotypic correlation within the overlapping individuals, and α represents

unmeasured sources of confounding such as population stratification.

We additionally simulated GWAS and GWAX summary data from a null scenario in which

the model-implied genetic covariance matrix consisted of a diagonal matrix with heritabilities

for direct, maternal, and paternal traits equal to .10, .025, and .025, respectively. In this sce-

nario, genetic architecture is not shared across the GWAS and GWAX, and the multivariate

heritability estimate is therefore expected to be 0. We fitted our multivariate Genomic SEM

relaxed model on the simulated summary statistics to quantify Type I error rates for the model

estimate of h2 across 100 replications.

Our simulation approach, in which summary statistics are directly generated from the

LDSC equation is particularly well-suited to our purposes. Direct generation of summary

statistics allows us to consider an expansive set of replications and conditions (i.e. 3,600 sets

of simulated summary statistics total) that would be computationally prohibitive to simulate

using a framework in which raw phenotype data were first generated for individual genomes

and then submitted to GWAS. Summary data simulated under the LDSC model has the

properties needed for analysis of genetic architecture by LDSC and for meta-analysis of

effect sizes across phenotypes on a per-variant basis. Importantly, like any simulation

approach, our approach also lacks some nuances of real data. For example, while we simulate

summary data as a function of LD scores, we do not simulate summary data directly accord-

ing to linkage disequilibrium (LD) structure (this would require the expansion of the covari-

ance matrix of Z statistics across phenotypes to include cross-SNP covariances, which would

dramatically increase computational burden). Thus, the simulated summary data are not

appropriate for applications that are directly based on LD structure such as clumping and

pruning, identification of lead SNPs within loci, or estimation of heritability using methods

such as HDL [34] and HESS [23], which directly rely on LD structure (rather than simply on

LD scores).

We present results of simulations in which we generate summary statistics under condi-

tions of no sample overlap (Ns = 0) and no population stratification (a = 0). However, within

this analytic framework, and in previous work using raw data simulation [18] we have con-

firmed that Genomic SEM produces unbiased estimates and standard errors when summary

statistics are generated with sample overlap, phenotypic correlation within overlapping indi-

viduals, and population stratification.
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Analysis of simulated summary statistics

We compared the performance of three approaches to recover common variant observed SNP

heritability for continuous traits and liability-scale heritability for binary traits: 1) LDSC of

summary statistics from a conventional meta-analysis of Z statistics using the observed sample

sizes (“Conventional Approach [Uncorrected]”), 2) LDSC of summary statistics from a con-

ventional inverse-variance weighted meta-analysis of corrected betas and SEs assuming a sim-

ple GWAX model (“Conventional Approach [Standard Correction]”), and 3) our multivariate

Genomic SEM-based approach, using the minimal identification constraint λdirect = 1 such

that s2
F corresponds to the estimate of h2

F). For binary traits we additionally introduced a

correction for the conversion from observed to liability scale heritability (“Conventional

Approach [Standard + Liability Correction]”). The liability correction consisted of using the

sum of effective sample sizes (Neff, defined as 4vk(1−vk)nk, where vk is the sample prevalence

for study k) multiplied by the expected heritability attenuation based on a simple GWAX

model (i.e., Neffdirect+.25Neffmat+.25Neffpat). Because Neff represents the sample size for an

equally balanced GWAS in terms of % of cases and controls (i.e., 50% cases, 50% controls),

the sum of effective sample sizes is then entered in the LDSC stage, along with a .5 as sample

prevalence. See Grotzinger et al. [31] for a more detailed explanation on the liability-scale cor-

rection based on the sum of effective sample sizes. The conventional uncorrected approach is

reflective of the approaches taken by Jansen et al. [16] and Wightman et al. [4]. The conven-

tional corrected approach is reflective of the approaches taken by Marioni et al. [3] and Bellen-

guez et al. [5]. The conventional approach with standard and liability correction combines the

approaches taken by Marioni et al. [3] and Bellenguez et al. [5] with the liability-scale correc-

tion introduced by Grotzinger et al. [31], thus maintaining the standard GWAX assumptions

while eliminating bias arising from differences in ascertainment across the GWAS and

GWAXs.

For each condition, we calculated: 1) mean parameter estimate, 2) standard deviation (SD)

of the parameter estimate, 3) mean standard error (SE) of the parameter estimate, and 4) Per-

cent Bias Error (%BE) of the parameter estimate, calculated as:

%BE ¼
1

100

P100

r¼1
ð

ĥ2
l;r

h2
l;True
� 1Þ

Where ĥ2
l r is the parameter estimate in replication r, and h2

l;True is its true value for that par-

ticular condition.

Simulation study of individual SNP effects

We extended our simulations for recovery of heritability to allow us to test for the recovery

of individual SNP effects for both continuous and binary traits. Although the simulation for

recovery of heritability generated individual level SNP effects, those analyses simulated based

on a population model with a known genetic covariance structure, but not known effects for

individual SNPs. However, in order to benchmark performance of each method for estimat-

ing individual SNP effects we must know their true effect size in the population from which

we draw our simulation. We therefore extended the simulation analyses to include a single

individual SNP per replication with a known true effect according to the conditions in S1

Table. We set the true effect (γ) of this SNP on F to be equal to the partially standardized (i.e.

standard deviations in liability for AD per effect allele) beta coefficient of genome-wide-sig-

nificant SNP rs60738304 from the IGAP summary statistics (b = .068, MAF = 0.305), such
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that

½b1j; b2j; b3j� ¼ gL ¼ ½:068l1; :068l2; :068l3�:

For continuous traits, we sampled observed regression coefficients from their sample-size

dependent sampling distribution as follows

b̂1 ; b̂2 ; b̂3

h i
� N ½b1; b2; b3�;
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For binary traits, the regression coefficients were sampled from their sampling distribution

as:

b̂1 ; b̂2 ; b̂3

h i
� N ½b1; b2; b3�;

1 � 2MAFð1 � MAFÞb1

2
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Note that because we simulate under conditions of no sample overlap across any of the

direct GWAS and two GWAX datasets, the sampling covariance matrix of the coefficients is

diagonal in the population model (the corresponding cells in the V matrix are nevertheless

freely estimated when the data are analyzed in Genomic SEM, such that any sample overlap

that does exist is automatically detected and corrected for).

Analysis of simulated data

We computed meta-analytic estimates of γ using the conventional corrected and uncorrected

approaches, and the multivariate Genomic SEM approach (model with individual SNP effects

using the minimal identification constraint λdirect = 1, such that γ takes on the scale of the

direct GWAS). Because the Genomic SEM approach requires a genetic covariance matrix that

includes terms for individual SNP effects and terms for genome-wide genetic covariances (the

genome-wide covariance structure informs the estimation of individual SNP effects), we con-

verted the simulated regression coefficients to SNP-level genetic covariances and appended

them to genome-wide genetic covariance matrices estimated from LDSC using the genome-

wide summary statistics produced under the simulation of SNP heritability for the correspond-

ing condition.

For each simulation condition, we calculated: 1) mean parameter estimate, 2) standard

deviation (SD) of the parameter estimate, 3) mean standard error (SE) of the parameter esti-

mate, 4) mean Z statistic of the parameter estimate, and 5) Percent Bias Error (%BE) of the

parameter estimate.
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Selection of GWAS and GWAX summary data

We compiled summary data from three published European ancestry direct case-control

GWAS of AD and GWAX of parental history of AD.

Direct case-control GWAS summary statistics encompassed the discovery sample from the

IGAP consortium [12] comprising 21,982 Clinical AD cases (mean age of onset = 72.93 years)

and 41,944 controls (mean age of evaluation = 72.415 years). Cohorts contributing to IGAP

varied considerably in the extent to which clinical determination of case and control status was

confirmed by autopsy. To avoid bias otherwise arising from variation in case prevalence across

cohorts contributing to IGAP, we followed the approach described by Grotzinger et al. [31],

using the sum of effective sample sizes (4vk(1−vk)nk, where vk is the sample prevalence for each

GWAS contributing to the GWAS meta-analysis). Our GWAX summary data of proxy-pheno-

type AD included 27,696 cases and 260,980 controls of history of maternal AD, and 14,338

cases and 245,941 controls of history of paternal AD, both phenotypes from UK Biobank [3].

Case status for UK Biobank was determined by response to the following two questions “Has/

did your father ever suffer from Alzheimer’s disease/dementia?” and “Has/did your mother

ever suffer from Alzheimer’s disease/dementia?” at the initial assessment visit (2006–2010), the

first repeat assessment visit (2012–2013) and the imaging visit (2014+). Participants whose

parents were younger than 60 years or died prior to age 60 years, and without parental age

information were excluded. Zhang et al. [28] report that the mean age of maternal cases was

83.7 years, the mean age of paternal cases was 81.8 years, the mean age of maternal controls

was 78.1 years, and the mean age of paternal controls was 76.2 years. Further details on case

ascertainment, genotyping, and quality control can be found in the original articles for the cor-

responding summary statistics.

We additionally curated the following GWAS summary statistics for the estimation of

genetic correlations: two recent meta-analyses of direct GWAS and GWAX of AD [3,16],

brain volume [35] in the general population, educational attainment [36] in the general popu-

lation and a general genetic factor of cognitive function [37] in the general population.

Quality control of GWAS and GWAX summary aata

LD-Score Regression (LDSC). All summary statistics used for LDSC were cleaned and pro-

cessed using the munge function of Genomic SEM, using the standard practice of retaining all

HapMap3 [38] SNPs outside of the major histocompatibility complex (MHC) region with minor

allele frequencies (MAFs)� .01 and information scores (INFO)> .9. To avoid misfit in LD score

regression due to extremely large effect sizes within the APOE region, we additionally remove this

region (CHR19:45,116,911–46,318,605). This has a similar effect to the standard practice in LDSC

of removing SNPs with extremely large test statistics. The LD scores used for the analyses pre-

sented were estimated from the European sample of 1000 Genomes, but restricted to HapMap3

SNPs as these tend to be well-imputed and produce accurate estimates of heritability. In the

LDSC equation, we enter the total number of SNPs in the reference LD panel before excluding

the MHC and APOE regions, such that the SNP heritability estimates reported here retain similar

interpretation to those typically produced by LDSC in other contexts. Based on these procedures,

the SNP heritability estimates produced by LDSC should be considered estimates of heritability

explained by common SNPs, not including the extremely strong effect of APOE.

Multivariate GWAS

For the SNP portion of the multivariate model that included individual SNP effects, we used

the default QC procedures in Genomic SEM [18] of removing SNPs with an MAF < .005 in

the 1000 Genomes Phase 3 reference panel and SNPs with an INFO score< 0.6 in the
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univariate GWAS summary statistics. Using these QC procedures left 7,192,577 SNPs across

the three contributing summary statistics datasets. Prior to running any multivariate GWAS,

all SNP effects were converted to logistic regression coefficients, standardized with respect to

the total liability scale variance in the outcome using the sumstats function in GenomicSEM,

and corrected for genomic inflation by multiplying the standard errors by square root of the

univariate LDSC intercept when the intercept was above 1. These transformed estimates were

then multiplied by the SNP variance (estimated as 2�MAF(1-MAF)) to produce genetic covari-

ances. In the case of some variants within the APOE region with very large effects, we reduced

the MAF relative to its reference panel value when calculating the SNP variance in order to

prevent the full S matrix (containing both SNP effects and genetic covariances among the

direct GWAS and two GWAX phenotypes) from being nonpositive definite. As we ultimately

estimate SNP effects in per effect-allele units, rather than in per standard deviation units, this

decision does not bias the estimates of interest.

Post GWAS analysis of meta-analytic results in FUMA

We applied FUMA [39] to results of our multivariate GWAS meta-analysis to identify inde-

pendent significant SNPs, lead SNPs, and risk loci, using the defaults. Independent significant

SNPs were defined as genome wide significant SNPs that are independent from one another at

r2<.60. Independent significant SNPs are clumped to identify lead SNPs, which are indepen-

dent from each other at r2 < 0.1. In defining genomic risk loci, independent significant SNPs

that are associated r2�.10 are assigned to the same locus, and independent significant SNPs

closer than 250kb are merged into a single locus. The most significant lead SNP in a locus is

used to represent that locus. The EUR population from 1000 Genomes Phase 3 was used as the

reference panel. As 16 SNPs in the APOE block (rs429358) produced very large Z statistics

such that their p-value was treated by FUMA as 0 and excluded, we manually entered the most

significant SNP in the APOE block into FUMA as the lead SNP.

Prevalence rates in relation to the heritability of clinical AD and biological

AD

Clinical AD. When methods for estimating SNP heritability, such as LDSC, are applied to

GWAS of binary phenotypes, the estimate of heritability are on the observed scale. Observed

scale heritability is difficult to interpret, because it takes on a metric that is idiosyncratic to the

balance of cases and controls in the sample, and agnostic to the population prevalence rates of

the categories. It is more interpretable to convert observed scale heritability to liability scale

heritability based on a liability threshold model, which assumes that a normally distributed lia-

bility toward the binary phenotype exists in a population. Under this model, individuals with a

liability above a certain threshold are affected whereas those below this threshold are unaf-

fected. The liability-scale SNP heritability estimate is therefore an estimate of the proportion of

variation in this continuous liability that is explained by all (directly and indirectly tagged)

SNPs on which the GWAS is based. For ascertained samples, in which the proportion of cases

does not represent their prevalence in the population, and assuming that the control partici-

pants are successfully screened, such that they are unaffected by the disorder (an issue that we

return to next), the expected liability scale heritability (ĥ2
l ) can be obtained from observed

scale heritability (h2
o) according to Peyrot et al. [40]

ĥ2

l ¼
P2

populationð1 � PpopulationÞ
2

Psampleð1 � PsampleÞφðtÞ
2

h2

o;
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where Psample is the proportion of cases in the GWAS sample, Ppopulation is the proportion of

cases in the population (i.e. the population prevalence), t is the threshold of the cumulative

normal distribution corresponding to the population prevalence, and φ(t) is the density of the

normal distribution at t.
Whereas Psample is known, Ppopulation must be obtained from collateral epidemiological data.

As Yang et al. [41] write, “Application of [the transformation from observed scale heritability

to liability scale heritability] requires an estimate of [the population prevalence of the disor-

der], for which estimates can be surprisingly hard to find, and most applications include a sen-

sitivity analysis to the choice of [this parameter].” Following this guidance, we provide

estimates of liability scale heritability across a range of different prevalence rates, and provide

rough age equivalents of these prevalence rates based on published epidemiological data from

the Medical Research Council Cognitive Function and Ageing Study II [19]. We refer to this

estimate as the estimate of heritability of Clinical AD, in that this is the estimate based on the

prevalence rate of the clinical diagnosis, and does not account for undetected biological AD

that may be more prevalent in the population.

Biological AD

The past decade of research on AD has been increasingly cognizant of the fact that “the patho-

physiological process of [AD] begins years, if not decades, before the diagnosis of dementia”

[42]. Those presenting with Clinical AD may not constitute those individuals with the most

severe forms of AD pathophysiology, but may be constitute a group whose cognitive impair-

ments are more overt or detectable due to ancillary characteristics (such as those related to

peak premorbid levels of cognitive functioning) that are unrelated to the genetics of biological

AD [27]. Indeed, this common observation that differences in ancillary factors such as educa-

tional attainment are related to differences in Clinical AD rates among individuals with equiv-

alent levels of brain pathology has led to the popular concept of cognitive reserve [7,20,43]. In

order to estimate the heritability of biological AD, we capitalize on the Clinical AD GWAS and

the age-specific rates of biological AD. We employ the formula for converting observed to lia-

bility scale heritability that corrects for case contamination in control participants provided by

Peyrot et al. [40], further adapting to allow for imperfect screening of participants (i.e. screen-

ing for Clinical but not biological AD):

ĥ2

l ¼
P2

population Biological ADð1 � Ppopulation Biological ADÞ
2

Psample Clinical ADð1 � Psample Clinical ADÞð1 � FCRÞ2φðtÞ2
h2

o;

where FCR is the false classification rate: the proportion of incorrectly classified control partic-

ipants in the GWAS. When control participants are a random sample of the population, we set

FCR = Ppopulation. However, because controls have been screened for clinical AD but not bio-

logical AD, and we estimate the liability scale heritability for biological AD under the assump-

tion that clinical AD represents a random subset of biological AD, and compute FCR as

FCR ¼ ðPpopulation Biological AD � Ppopulation Clinical ADÞ

We provide estimates of liability scale heritability of biological AD according to this equa-

tion across a range of different population prevalence rates for biological AD, and provide

rough age equivalents of these prevalence rates based on recently published data from Jack

et al. [10]. To achieve this, we fix Ppopulation Clinical AD at the approximate age-specific estimate

of the clinical AD prevalence rate from epidemiological data for the mean age of the control

sample in IGAP (72.42 years, prevalence rate = 0.0285) to reflect the expected proportion of
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participants that have been screened out of the control sample for clinical AD) and we vary

Ppopulation Biological AD.

Local SNP heritability in HESS

We used HESS to estimate local common variant SNP heritability in 1,703 approximately

independent blocks across the genome, using common variants (MAF>.01) in the EUR popu-

lation from 1000 Genomes as the reference panel [23]. Because LDSC relies on the variation in

average LD across SNPs to estimate SNP heritability, it cannot be used to estimate local herita-

bility within individual loci in which LD is relatively homogeneously high. In contrast, because

HESS relies on the LD matrix itself to estimate SNP heritability, and does not specifically rely

on variation in average LD, it is more appropriate for estimating local heritability.
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